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Kink dynamics in a one-dimensional growing surface
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A high-symmetry crystal surface may undergo a kinetic instability during the growth, such that its late stage
evolution resembles a phase separation process. This parallel is rigorous in one dimension, if the conserved
surface current is derivable from a free energy. We study the problem in the presence of a physically relevant
term breaking the up-down symmetry of the surface and that cannot be derived from a free energy. Following
the treatment introduced by Kawasaki and OlRhysica A116, 573(1982] for the symmetric case, we are
able to translate the problem of the surface evolution into a problem of nonlinear dynamics ofdonhain
walls). Because of the break of symmetry, two different clasgear{dB) of kinks appear and their analytical
form is derived. The effect of the adding term is to shrink a kinkand to widen the neighboring kin& in
such a way that the product of their widths keeps constant. Concerning the dynamics, this implies that kinks
move much faster than kinkB. Since the kink profiles approach exponentially the asymptotical values, the
time dependence of the average distah¢g between kinks doesot change:L(t)~Int in the absence of
noise, and_(t)~tY? in the presence ofshod noise. However, the crossover time between the first and the
second regime may increase even of some orders of magnitude. Finally, our results show thatrkienkbe
so narrow that their width is comparable to the lattice constant: in this case, they indeed represent a disconti-
nuity of the surface slope, that is, an angular point, and a different approach to coarsening should be used.
[S1063-651X98)07307-3
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[. INTRODUCTION Concerning deterministic instabilities, the main one
responsible—and perhaps the sole one responsible for a ho-
A crystalline surface growing under a flux of incoming moepitaxial high-symmetry surface—for the destabilization
particles from the vapor phase represents a typical examp[@f the flat surface is now known as the Ehrlich-Schwoebel
of an out-of-equilibrium system. Its microscopic evolution effect[4]: an adatom approaching a step from above or be-
may be described as follows: once the adatom has arrived d@W may have different probabilities of attachement. If the
the surface, it performs a thermally activated diffusion pro-sticking from above is discouraged, an adatom that has the
cess until it is “trapped” Somewhere, or it evapora’[es bypOSSIbI'Ity to choose between two different kinds of St@.’ﬂ;
coming back to the vapor phase. Which surface relaxatio@scending one and a descending)omil stick preferably to
mechanism(surface diffusion or evaporation-condensation the ascending one, thus determining an uphill current. It is
indeed prevails depends on the temperature and the specifidportant to remark that this is a purely out-of-equilibrium
parameters of the materigl]. Anyway, for a wide class of €ffect, because at equilibrium detailed balance forbids such a
materials(mainly metal$, at the relevant temperatures for current.
molecular beam epitaxyMBE) desorption may be ne- Even without entering into details, as will be done in the
glected. In this case, two different “traps” may be effective: Next section, it is possible to explain here the effect of such a
another adatonfgiving rise to a nucleation phenomenpor ~ Mechanism. In fact, as first pointed out by Villdif], the
a step. If we limit ourselves to the case of a high-symmetryesulting surface currerjt=vm (m=dz/dx being the local
surface, there are no preexisting steps and therefore the meglope of the surface armithe local height once put in the
tioned step belongs to a growing island. Once islands havevolution equatlomz/at— —djlox gives rise to a diffusion-
coalesced, leading to the completition of one layer, step§ype equation,z= — v32z, where the negative sign of the
should disappear and the whole previous process should staliffusion constant { v) is responsible for the instability of
again. the flat surface Z=const). In the present paper, we will
The previous qualitative picture applies to the case of anainly be concerned with the late stages of this instability,
stable layer-by-layer growth. In reality, it is hindered both bywhen additional and nonlinear terms must be introduced to
noise and by possible instabilities; sources of noise are fluadescribe the dynamics of the surface. In the next section, we
tuations in the flux of incoming particléshot noisg in the  will introduce a more general expression for the surface cur-
surface diffusion currenfdiffusion noisg, and in the nucle- rentj and we will take into account the breaking of the
ation eventgnucleation noise While the first two have been — —z symmetry, induced by the fluk of atoms.
well studied in the context of several different modgts,
the latter one still needs a more basic comprehengdn Il. THE SURFACE CURRENT

The study of a growth process may ideally be divided into
*Electronic address: politip@fi.infn.it two main steps: the first one starts from some microscopic
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point of view and should arrive to a continuum description oftween a nucleation-dominated regimma<€1/) and a step-
the surface/interface; the second one may emssumea  flow regime > 1/p): the latter is generally relevant for
given evolution equation and study it. Most of the difficulties vicinal surfaces, which grow through sticking of adatoms to
encountered in a theoretical study of MBE are related to thgreexisting steps; anyway, if a flat surface develops an insta-
first step. In the present paper, we will limit ourselves to apjjity with regions of high slope, such a regime becomes
one-dimensional high-symmetry surface, and in this sectiofinportant also for high-symmetry orientations.
we will introduce and justify a specific Langevin-type equa-  The second relevant length, the Schwoebel length, is a
tion. . ) measure of the asymmetry in the sticking coefficients of an
t'_l'he local lsurflace he|gz_m(x,t) f's gtﬁnera}lly sugpo_se(lj: 0 adatom to a step. lts simplest forfa] is Is=a(D_/D.
satisfy % ocal _equation - ot 'the lorm Jz=a —1), whereD, andD _ are such coefficients for an adatom
+ F(dyz,dyz, . . . ), F being the incoming fluxa the in-plane approaching the step from abov () and below D ). The

o o e oce o o e existence of an Elvich-Schvioebel effct means B
p q <D _ and thereforés>0. To describe the meaning kf, let

i.e., z is adimensional The underlying hypotheses have . : . :
been discussed in Rg[f6] where wey hgveyshown that the US consider a terrace of sizé<<lp): if [s<I, only a fraction
' Lﬁ“ of the fallen adatoms will contribute to the uphill cur-

appearance of angular points in the surface profile may b o = X
treated correctly solely through the introduction of a nonlo-"€Nt: and thereforges=(Fol)(Is/lI)=Fols, since the num-

cal equation. We will take up this point again at the end of?€r of atoms arriving per unit time on a terrace of size

the article. nothing butFyl. Conversely, ifl>1 all the adatoms will
The fluxF contains a constant pafl, which is “elimi- ~ Stick to the ascending step, and gg="F,l. The simplest

nated” by redefiningz(x,t): z—z—aF,t, and a fluctuating interpolation formula, valid for any value ¢§, is

part 6F(x,t) which represents the so-called shot noise,

H H H - H H H H . . FOIS
which is supposed to follow a Gaussian-like distribution: jeem——o m|> 1. (3)
1+1gm|
(6F(x,1))=0,
(SF(X,1)OF (X' ,1))=2Fod(x=x")o(t=t"). (1)  This formula also allows one to obtain a semiquantitative

expression for the parameterin fact, when|m|=1/,, Eq.

In the limit of negligible desorption, and if overhangs are ) t match th : lid at I SlopRs:
forbidden, surface growth proceeds by conserving both mas(s?’ must matc € expression valid at small SIopRs

. 2 . .
and volume: therefore, the functio must be derivable — M- The result isv=Foldlp/(Is+1p). It is important to
from a surface currerjt, and the evolution equation will be "emark that all the previous considerations may be made

written in the form more rigorous[6], but in this section we are mainly inter-
ested in justifying the expression for the currgntrather
Az(X,t)=—adyj +asF(x,t). (2)  than in deriving it.

The main characteristic of the Ehrlich-Schwoebel current
The central question is which curreingoverns the evolution  jyst discussed is that it has no zeros other then0 and
of the surface, a still debated question even for the simplifieth— + . A zero injgg is extremely importanf10] because
model of a one-dimensional surface, as shown by the follows,o other terms ij will be seen to depend on higher-order
ing discussion on the different terms appearing.i8ymme- derivatives ofz(x,t). So, a constant slop®, may be a sta-
try a_rgumepts §imply tel thajtdoesznot depe'[,‘,d an(7], but tionary slope if a,md oniy ifieg(mg) =0. An extra zeromg
on its derivatives ii=dxz, m'=d,z, m"=d,z,...) and oy pave different origins: the symmetry of the crystal lat-
that—on a high-symmetry surface— it must be an odd funCyjce 110,11, nonthermal relaxation mechanisfis2], or a
tion of x: so, a term proportional ton or m" satisfies this  ansjent mobility of the adatom just after the deposition

request, but if proportional te’, it does not. [13]. For example, the slope at 45° corresponds in a cubic
lattice to the high-symmetry orientatidfi1): we expect that
A. Ehrlich-Schwoebel current jesVvanishes on it, as it vanishes on {i®) (m=0) and(01)

In the Introduction, we mentioned the Ehrlich-Schwoebel(M=) orientations. A different example is the following: If
effect, which gives rise to a slope-dependent currgra{m). atoms falling in the vicinity of a step have. a higher probabil-
Since it must be an odd function af, its form at smallm ity to land on the lower terrace, or to kick down the step
will be jes= vm. The coefficient dependg8,9] on the flux adatom, a downhill currenjt, , proportlonal to the densllty of
Fo, the diffusion length, , and the Schwoebel lengty: 1, ~ Steps and ,therefore to the slope will appear:j,=—v'm.
measures the typical linear distance traveled by the ad- atom©: if v>v", @ zero will appear whenjs+j|)=0.
before meeting another one and forming the nucleus of a YWhatever is the origin of extra ze® in the slope-
growing island. It represents the “maximal” size of a ter- depenQent current, we can introduce two different models,
race, because It> 1, the probability to nucleate a new island &ccording to the presenémodel ) or absencémodel 1) of
on it is very high; during the first stages of growth, when theZ€ros at finite slope. The simplest expressionggeffor the
surface is still more or less flalt is also the typical size of W0 models, having the correct symmetry properties| %

a terrace. It is not so when an instability develops: in this
case,| may be much smaller thalg, and the slopem= 1/ ) .
may be fairly large. Indeed, the slopd dHiscriminates be- model I:  jgs=vm(1—m*/mg), 4
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rym © but does not change sign withis
model Il:  jes=7—7—. 5
1+lom i sa= dA(M?), ®
Model Il does not correspond to a phase separation process
(see Sec. I it will be discussed in Sec. VIIl. whereA is any even function of the local slope. The simplest
form for A, A=(\/2)m?, has been introduced by S al.
B. Mullins-like current [19]. It is also called the “conserved Kardar-Parisi-Zhang

T . term,” because in Eq(2) it looks like the Laplacian of
The most famous “equilibrium” current is perhaps the (4,2)2, i.e., the nonlinear term of the KPZ equatif0].

one (jy) introduced by Mullins[15] forty years ago, to The current(8) is not derivable from a free energy. As
study the relaxation .towards .equ.|I|br|um of a nons!ngularpointed out by Somfai and Sand@1] it is necessary to rise
grooved surface. A simple derivation starts from writiRg e order ofj <5 to make it derivable from some free energy

as the gradient of a chemicdburface potential: j\,= for example. i ca~a.[ (M )21=(8/8m) [dxFan With F.

—T'd,u, wherel is the adatom mobility, and afterwards to (~(m’)3). ple, Jsg~ax (M')7]=( ) sB sB

derive u from a surface free energy: Before proceeding, let us discuss the physical origin of
SE jsg- When there is a gradient in the densityf adatoms, a

,  with 5=0’f dxy1+m?aZ. (6)  current of the formj=—Dd,p is expected, wher® is the
diffusion constant. In the case of a growing surface, the ap-
plicability of the previous expression is not obvious, because
steps are sinks for diffusing atoms and—at least if thermal
detachment is forbidden—interlayer diffusion is absent. In
= Km’(x) (7)  spite of this, the above expression may help in understand-
ing: in fact, adatom density on a terrace depends on itd size
with K=a%To. because a larger terrace collects more atoms from the flux
The usage of this expression in our problem may be queghan a smaller one. Sp=p(l)=p(|m[). In other words, the
tionable in at least two respects: First, it applies to a nonsinfunction A appearing injsg seems to be proportional to the
gular surface, i.e., above the roughening transifign sec- adatom density itself.
ond, it applies to a close-to-equilibrium surface. Concerning This interpretation can be made more rigorous for large
the first remark, our surface is a high-symmetry one andlopes [m|=11>1/p), where nucleation of new terraces is
therefore almost necessarily beldlyk, because for a high absent angh can be simply determined by solving the diffu-
symmetry orientation the roughening temperature is equal teion equatiorv,p=Fq+ Dc?ffp in the quasistatic approxima-
or nearly equal to the melting temperatdrg , while ordi-  tion (d;p=0) and withp(0)=p(l)=0 as boundary condi-
nary temperatures for MBE are well beloly,. Neverthe- tions (i.e., steps are perfect sinksThe resulting average
less, our surface—which is strongly out of equilibrium— density on the terrace ip=(F,/D)I? and the current is
contains a lot of steps because the incoming flux makes thigsg= — Fd,(1/m?). This expression agrees with those deter-
surface rough16]: therefore, the surface current should be mined, with different methods, by Politi and Villa[i®] and
nonsingular at zero slope. by Krug [22]. Hunt et al. [23] suggest thajsg may derive
The latter remark is more “critical”: the Mullins current from the sticking asymmetry induced by the Ehrlich-
derives from thermal detachment of atoms from steps in orSchwoebel effect: nevertheleggg does not vanish even if
der to minimize the surface free energy. It is not clear if such =0 [6,22].
a process is effective in the presence of a fluxFor ex- One could ask why the average valuepofs taken. The
ample, Stroscio and Pier¢&7] state that thermal detachment answer is that inhomogeneities in the adatom density on a
is negligible in the homoepitaxial growth of Rat least at given terrace give rise tggs. In fact, if no Ehrlich-
room temperatupeand therefore they do not wrifd8] such  Schwoebel effect is present(x) is symmetric with respect
a term in the current. Anyway, it has been shdril6] that  to the center of the terrace and therefore the average value of
the current(7) may derive also from nonequilibrium effects: g,p vanishes. Conversely, i§>0 then(d,p)eracs 0 and it
nucleation noise and diffusion noise. The first one should beorresponds just tpgs. This remark stresses the “similar”

B 8z(X)

By combining the different equations, in the limit of small
slopes we obtain

dominant and correspond to the val#el6] K=Flp . origin of jesandjgg. Itis likely that a systematic derivation
of the surface current should give all the terms we have
C. Symmetry-breaking current introduced:j g5 (which depends on the slopg), jsg (which

epends on the curvature’), andj,, (which depends on a

. . d
The terms in the surface current that have been |ntroduce|qk‘:lh(_}r order derivativen”). Anyway, a rigorous derivation

so far not only satisfy thex— —x symmetry [because . till lacki t th t ab It hioh- t
j(—x)=—j(x)], but they also fulfill the up-down symmetry, Ic?risérlnazgnlnng atthe moment, above afl for a high-symmetry

corresponding to the change of signafin fact, if z——z

both g5 andjy change sign. However, there is no reason to

expect that surface growth proceeds by conserving such sym- D. The current of our model

metry, since the flux breaks it. In the following, we will study the dynamical evolution of

A symmetry-breakingSB) term is intrinsically nonlinear, the surface, as determined by the current
because any current of the forp-a3z(x,t) changes sign

with z. The lowest order expression that changes sign with i=iestimtise 9
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where By going on with this mechanical analogy, the existence
of coarsening requires a condition on the stationary configu-

. m? rations: the period of the oscillation must be an increasing
Jes™ Vm(l_m_g>’ (10 fynction of the amplitudg24]; a condition that is surely
fulfilled by the potentialV(m), since the quartic correction
jm=Km’, (11  has a negative sign. Clearly, coarsening also requires that
these stationary solutions are not stable: more precisely, they
jsg=Amm. 12 must be unstable with respect to wavelength fluctuations, but

stable with respect to amplitude fluctuations.

The reason for our choice is clear: We want to study the 1N€ previous mechanical analogy helps in understanding
effect of the symmetry-breaking currerjtsf) on the phase why the syrfacg keeps a regglar p_roﬁle anq _also aIIows.one
separation process determined by the other two terms of tH@ determine this profile at a given time, but itis not effective
surface current jies+jy), and for this aim we choose the N determining the time dependenceldft), i.e., the coars-
simplest expression fofes—which must have a zero at a €ning law[23]. To this end, we must observe that the evo-
finite slopemy— and for jsg—for which we takeA(m?) lution equation for the local slopm (which represents the
=\m2/2. In the last section, we will discuss how the conclu- Crder parameter” of our problemsatisfies the noisy Cahn-

sions depend onot depend on the present choice. Hilliard equation[25]:
lll. EVOLUTION IN THE ABSENCE alatm:ai(a—f) +p(x1), where g:zf dxC.
OF THE SYMMETRY-BREAKING CURRENT om

(16)
In the “language” of surface growth, the evolution of the

surface proceeds as follows: After a tirfean instability of This equation corresponds to a phase separation process,
the flat surface with a well-determined wavelengthdevel-  where the order parameter is conseryed dxm(x,t)=0].
ops. In this linear regimd,* is constant and the amplitude The system is made up of domains whemeequals one of
increases exponentially. Afterwards, because of the nonlinthe two degenerate minima of the potential enetdfm)
earity of jes a coarsening process takes place: the wave=—Vv(m); domains that are separated by domain walls
lengthL (t) of the moundlikg(or pyramidlike surface profile  move in order to minimize the “action’’F. Domain wall(or
increases in time, while the maximal slope tends to the con“kink” ) movement is determined both by théiteterminis-
stant valuestm,. So, the surface is “made up” of neigh-tic) interaction and by fluctuations induced by the conserved
boring regions where the slope is alternateigarly equalto  noise. We will see that the growing surfateven in the

+mg and —m. presence of the symmetry-breaking currgrt) can be
The first stages of growth can be analyzed by linearizingnapped in a one-dimensional system of interacting kinks
Eq. (2) with the current(9): that annihilate, so that the average distah¢¢) between
. ) . kinks increases in time.
a “aiz(x,t) = —vdyz(x,t) —Kdyz(x,t), (13 By using this method for the symmetric casgg=0),

Kawasaki and Ohtf26] have found the equation of motion
which showg6,9,23 that the flat surface is unstable againstfor the kinks, which has been then studied by Kawakatsu and
deformations of wavelength larger thap=2m\K/v. The  Munakata[27]. The final result is thak (t) grows logarith-
most unstable mode correspondd {p= \2L . and its ampli-  mically with time if noise is absent and grows &€ if noise
tude grows as effar”/4K)t]. So, L*=L, and t* s present.
=(4K/av?).

The nonlinear profiles of the mounds are determined as
stationary solutions of E(2), that is to say as solutions of

the equatiorj =0: A stationary kinkM (x) is defined as a monotonic solution
of j[M(x)]=0, with M(x) tending to(differeny minima of
Jes(m) +Km"(x)=0. (149 u(m), whenx— == In the present case, there are only two
symmetric minima intmg and therefore only two kinks
M . (x) are possible, the subscript corresponding to the sign
of its first derivative, i.e., to the curvature of the surface
profile.

The surprising result is that the “shape” of the kink does

which corresponds to an anharmonic pendulum, once Wgsi change because of the introduction of the symmetry-
have identified the slopm as its spatial coordinate amxdas breaking term. To see it, let us replace the expression

the time. Since the potential(m)= (»/2)m?1—m?/2m3]

has two symmetric maxima itt mg, the period of the oscil-
lation (i.e., the wavelength of the surface profildiverges
when its amplitude(i.e., the maximal slope of the surface . . . .
profile) goes tomy. If j s followed model II,V(m) would " the differential equation=0:

have no maxima and no limitation on the slope would be , _ )
present. Km"(x)+vm(1—m/mg)+xmm’ =0. (18

IV. KINK PROFILES

This equation can be derived by the following Lagrangian:

L=(K/2)m'2=V(m), with V'(m)=jegqdm), (15

M . (X)= = mptanh k- x/2) a7
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We obtain the following second degree equation for the paslower than linearly: This means that the velocity of the

rameters«.. : coarsening process goes to zero, as time increases.
As a final result, we obtain a Langevin equation for the
Kk% FAmgk. —2v=0, (19 discrete variableg;(t), or—equivalently—for the kink-kink
distancesX;(t)=x; . 1(t) —x;(t), which will be studied by
which gives the positive solutions translating it in a Fokker-Planck equation.
The treatment of Eq(23) (see Appendix A gives the
K+ =(yYN°m5+8vK +=xmg)/2K. (200  following coupled equations for the kink positions:

Two limiting cases, corresponding to weak and strong sym-
metry breaking, will be frequently used:

AMe<\V8vK, k,=k_=\2vIK=kg, (22) =(C1)+(C2) +(Cy)+ (1), (24)

—2a‘1m3; (=1 % =%

Ao VBIK, k. =Amo/K, k_—2vimg. (22 “Mere

C1) =8vm3[Ru(X)) —Ru(Xi—1)]1,
So, the effect of g5 is to create two classes of kinks: kinks (C1)=8rmp Re(Xi) = Rg(Xi-1)]

“A,” given by the profile M, (x) and characterized by a C) = B(AIMEk AR a(X)—R_ (X 25
width (L/k.), and kinks “B,” given by the profileM _(x) (C2)=BARMoKkAR-(X) ~R-p(Xi-1)]. (29
and whose width is (¥/_). For a strongjgg, Kk >k_: (C4):_ﬁ4mgKﬁ)\[Rﬁ(Xi)_Rﬁ(xifl)]a

kinks A are much narrower than kink3. It must also be
observed that the productk( x_) does not depend oR, and
since it equalgsee the algebraic equatiof2»/K). In other

terms, the effect of g5 is to shrink kinksA and to widen (n;(1))=0,
kinks B, in such a way that the product of their widths keeps o
constant. (mi(t) m;(t"))=—4maFo(— 1) I|x;—x;| S(t—t").

Let us explain the notations: Thi¢h kink is centered in
X;, and—because of the breaking of symmetry— two differ-
In this section we will describe the method to solve theent classes of kinks exist. In accordance with Sec. IV, their

V. FROM SURFACE DYNAMICS TO KINK DYNAMICS

growth equation for the surface-slope profile: profiles are given byM z(x) = Bmgtanh(gx/2), where 8=
+1. We will assume that thigh kink is of class8 (whatever
a lom=D JKm'—U’'(m)+Axmm'] with D,=—92 is its valug and its nearest neighbors of clasg. The quan-
(23) ity
in a “multikink” approximation. Since our approach follows Rg(X) =exp( — xgX) (26)

that introduced by Kawasaki and Ohfaé] to study the ) ] ]

above equation in the absence of ¥éerm, we will expose N (C;) expresses the interaction between kinks, when the

the main calculations in Appendix A and here we will limit distancegx;.; —X;| are large compared to (i4). _

ourselves to explaining the general lines of the method. Equation(24) can also be written in matrix formay;;x;
Once a kink is inserted in our problem, it moves with a=1;+ #;. The matrixA takes into account the kinematical

given (constant velocity v° and a profilem(x,t)=M(x  coupling between kinks, due to the conservation of the order

—v°), wherev? is found by solving the eigenvalues prob- parameter, antl contains the forces between kinks. The ma-

lem obtained by puttingn(x,t) in Eq. (23). Our system is trix A can be invertedi27], giving a tridiagonal and symmet-

made up of an ensemble of kinRsthat alternate to kinkB, ric AL

and we will look for an approximate solution of E®3) as

a superposition of kinks centered spand moving with ve- Al i+i) 27)
locity v; . Because of the interaction between kinksis not Tamg\ X Xioq)'

a constant, and depends on the position of the other kinks. In

principle, the nonlinear part dff(m) (i.e., the quartic term a 1

inciple, tr i S A= o (28)
m™) gives rise to terms ofi-kinks interaction: we will adopt i+ 1 4m2 X;

a “binary-interaction” approximation, which will be further

simplified by limiting to nearest-neighbor interaction. This The evaluation oA 1I is trivial:

procedure is justified by the fact that we are interested in the -

late stages of growth, when the distance between kinks is 1 a /Ii+li+1 li+1i_q
much larger than the width of their cores {/«.): so, they (A |_)i:4m2\ X + Xi_1
interact only through the tails of the profiles, which means 0 ' '

that the interaction decays exponentially, since tar2)  and the explicit expression df is found directly from Egs.
=+ 1Fexp(-«|x) whenx— * . For the same reason, the (25):

velocities v; and the accelerations; will be considered

“small,” because the typical size of the mounds grows li=RE(Xi) —Rp(Xi-1), (30

(29
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where R;;(X) is a linear combination of the two different This equation can be interpreted by saying that there is an

Rg(X): attraction between kinks, proportional to exp{X). If N
#0 (and “strong”), then we must distinguish between posi-
RE(X)=cgRg(X)+dgR_4(X) tive and negative kinks:
with o (4N2mg/3K)[exp( — Ky Xi) —expl — kyXi—1)],  B>0
] 16vm2[exp— k) X ) —exp( — kX _1)],  B<O.
Cp=8vmi—BAm3xh  and dg=B(4/3M3kp\. vmal X~ Xi) —exp— i Xi-)l - B (36

Concerning the noise, it is preferable to work with quan-The first comment is that symmetry breaking implies that a
tities that are not spatially correlated. To this end, the matrixpositive kink is attractedby a negative onemore strongly
A1 is written as the produdPP’" and new noise variables than a negative kink is attracted by a positive one. In other
7=P"7 are defined. Sinc® is a bidiagonal matrix whose Wwords, if we assign a mass to a kink, a negative kink weighs
Honvaﬁishing elements are more than a positive one, and the mass is proportional to the

width of the kink itself.
a 1 This interpretatﬁon seems to be satisfactory, but if we ana-
Pi=Pii1j= \/2——, (3D lyze the velocitiex;(t) rather than the “forces’l; the pic-
Mo \/Yl ture becomes more complicated. In the limi&E0 we have

7 is given by 7= a(7;+ 7;+1)/(2mey/X;), and it results

. exp— koX;) expl— koX_
o (1) =2av P(—xo |)_ P~ koXi—1)

Xi-1 Xi
(m)=0, () n(t"))=2aF5,;8(t—t"). (32 _{_eXF(_)’(‘.OXHl)_exF(;(-Kolxi—z). @

In order to eliminate the constant factor in the correlator, we _ _ _ _
simply put77i= \/Tl:o& . This way, the final equation for So, the effect of the conservation ldind. of the matrixA) is

kink dynamics is that x;(t) depends not only on the positions of the nearest-
neighbor (nn) kinks (xj+4), but also on those of the next-
) a [|i+|i+1 li+1_, 2|:0a" 3 & 4 nearest (nnn ones ;+,). Even more important, the
xi(t)= 2 2{ X + X } 5 —+ , nnn “interaction” is of the same order of magnitude as the
Mo : -1 Mo HZ VXi-1 nn one. While the interpretation of expkyX) and

(33)  exp(—«pXi_1) in Eq. (35), as, respectively, the interaction
with the kinks (+1) and (—1), is straightforward, in Eq.

(&(E())=6;6(t—t"). (37) the generic term exp{kgX) is divided by a different
X, and therefore a similar interpretation becomes less evi-
VI. FORCES AND KINK VELOCITIES dent. Anyway, if we do not ascribe too much importance to

) ) ) the quantitiesX; in the denominator, Eq37) says that kink
In this section we want to discuss the effect of the sym is attracted both by nn kinks and nnn kinks: the “interac-
metry breaking on the equations of motion for the Kinks.iion petweeni andi=2 has a kinematical origifconser-

Since we are here interested in the deterministic part of thg,tion of the order paramefeand indeed depends oq..,
interaction, we will not consider the noise. Therefore Eq._xi+1 rather than omx;.,—x; . A further comment is thlz;t in

(24) takes the form;x;=1; . Kawasaki and Ohtf26] sug-  the evaluation of ;+1;. ; two terms cancel exactly, because
gest looking orl; as the force acting on thigh kink. Let us  in this case action and reaction are opposite and equal.
consider the two opposite limita:=0 andAmy> 8vK. For If now we consider the case of a strong symmetry-
R;;(X) we obtain breaking term, the velocity takes the form

R* (x) = 8 vmexp( — koX) (34) : a’mif (1 1

B 0 0 ) . — )
Xl(t)|ﬁ>0 3K Xi + Xi—l exq K)\XI)
in the first limit \=0), and
1 N 1 N
R* (x) = (4\>m¢/3K)exp( — kyX), X Xi_q eXp(— 1 Xi-1)
R* (x) = 16vm3exp( — k) X) +day expl _)’zxxiﬂ) _expl ;(K)\Xi 2)}
i i-1

in the second onex(my>/8vK). In the previous equations, (38)
ko= +2vIK andk, =(Amy/K)> k. They correspond ta _
in the two pertinent limits. and

In the case of the absence of theerm, we simply get 0 2
an mo[exq_K)\Xi) eXF(—KAXi,l)

= 8umiexp(— X)) —exi—xoXi ] (@35 Vlso=T e Ty X1
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exp(— i\ Xi+1)  exp— K Xi-2) ap J 1 %
H— x| B9 =2 gpludaheld 52 5o Ganime:
(42
The surprising result is that the sign of the terms proportiona .
to exp(=r X)) and expt\X;_1) is inverted: so —because Its actual form, in our case, [29]
of kinematics—a negative kink is subject to a repulsive in-
) . - . . P J

teraction with its nn kinks. This result derives from the un- — = -, —[24({X})p]
balancing of action and reaction. A closer inspection of the at k IXx
derivation of Eqs(38) and(39) allows to give the following 2 5 5 5
interpretation: iff;; means the force exerted by the kipln Foad i J + J ) J P
the kinki (so thatl;=f;;,,+f;; ), then kinematics deter- amg K X ax2 | X2, Xe1Xii|'
mines that the effective forcﬁyiil is a linear combination (43)

of (fj j=1+fj+1;) andf; ;.. If A\=0, the first term vanishes,

but if A#0 it doesnot Furthermore, for a negative kink wheret/, is nothing but the “deterministic” velocity of the

fi-1; prevails overf; ., and it corresponds to a repulsive kth kink.

force for kinki. We are interested in the time dependence of the average
The conclusion we draw from the previous considerationssalue of X; (which does not depend dn. To this end, we

is that negative kinks move much slower than positive kinksdefine the distribution functions:

This results on one side from the fact that a bigger mass can

be attributed to them, and on the other side that they are N 4X)-
subject to an effective repulsive nn interaction. 9(Xi;t) = 0 (dX)ip, (44)
VII. FROM KINK DYNAMICS TO COARSENING LAWS -
g2(X; ,Xi+1it):f (dX)ii 410, (45
The interesting dynamical variables are the kink-kink dis- 0
tancesX;, rather than the kink positions . So, from Eq. "
(33) we obtain 93(Xi X1, Xj4251) = fo (dX)} 7+ 17+20- (46)
. a 1 . . L
Xi(1)= —| o— [R5 (X5 2) + R* 4(Xi+1) The notation @X); ;.1 ... means that the integration is per-
' 4m§ Xiypo PT2 A formed on all the variableX; but X; ,Xj 1, ... .

The details of the calculation follow Ref27] and there-
fore they will not be given here. By using the factorization
approximation

- R;}(Xiﬂ)_ Rtﬁ(xi)]

1
— 5 [RE(X) + R g(xi—1)

Xic1 920X Xi 130 =9(X)g(Xi 1), (47)
—RE(Xi-1)— Rtg(xi—z)]} g3(Xi X+ 1, Xi+2;) =9(X)9(Xi+1)9(Xj+2) (48
. \/Z_Foa[ - ) - w0 and integrating Eq(43) over (dX);, we obtain
2m . N d d
o [ VX1 Xt B 9
The previous equations have the form with the current of probability given by
: _ a /1
%0 =t({a+ 2 Gy({ahs JXD= W<;>[<Ri<X)+R*<X>>—(R:<X>+R*<X>)]g
0
2
with (&(DE(t))=8; 8(t—t") (41) _%<;>§_§ (50
0

and we can therefore obtain a Fokker-Planck equation for th
probability p({g},t) of finding a given distribution{g}, at

timet. Two different procedures exig28], due to Ito and to R* (X) +R* (X)
Stratonovich, but as remarked by Kawakatsu and Munakata * -
[27] the result is the same. This is true even in the presence [

fr the two relevant limitsR% (X) + R* (X) takes the form
+

16vmiexp — koX), A=0 (51)
(AN2m3BK)exp( — K X), Amgs\vK (52)

of the symmetry-breaking term, because the two procedures
may differ with respect of the terng;;, which does not
change if the term is added.

The Fokker-Planck equation writes and in the limith =0 we recover Eq(4-4) of Ref. [27].
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Important works on the solution of E¢49), which also 2

— ea
go beyond the factorization approximation by taking into  X(t)=(a/kq)In(t/ty), t3= 5o U |2n? (A=0).
account correlations of consecutive domains, are given in a 9(1e) (59

series of papers by Nagai and Kawasi@0|. Here, we will
follow Ref. [27] and the first of the papers cited in RE30].

The time dependence of the density of kink&)—or
alternatively of the average kink-kink distancé(t)=(X)
=1/n(t)—is studied by assuming that at large timésep- X(t)=(alk\)In(t/t,),
resents the only relevant scale in the problem, and therefore

In the opposite limit of a strong symmetry breakingng,
> /vK), a similar calculation gives

g(X;t) satisfies the scaling expression . 3ea? 1 K
27| = 5.2
~ o 49(1la) |AV
gOXit) =n(FXIX). (53 J
For example, for a Dirac-delta distributiqall the domains (Amo>yvK). (60)
have the same sizg(s)= d(s— 1),jmd for a Poisson distri- We therefore obtain that,~t,~t*, wheret* was de-
bution (randomly distributed kinKsg(s)=e~*. fined in Sec. Il as the time necessary for the developing of

Secondly, we will use a steady-state approximafidn| the linear instability of the flat surface. So, the time scale for
according to which the distributiog(X;t) does not depend the logarithmic coarsening does not depend\grbut the

on time, on scales sufficiently small with respectX¢t):  length scale does, since it depends on the width oflkre-
more precisely, on scaléé< X*. This means that the motion €sh domain wall. _ _
of a couple of kinks at a distance smaller théh is essen- We can ask what is the meaning of thedependence in

tially independent on the position of all the other kinks. Be-Egs.(59) and (60). As pointed out by Nagai and Kawasaki
cause of the scaling hypothesis, it must result th&t [30], since aInt=Int* the parameter should have some
=X/ a. with a constant. “universal” value. In a mean-field calculation these authors

The temporal variation af(t) is determined by the num- f@nd a=1, Whilg in::i numerical golution of the k_ink equa-
ber of kink-kink annihilations per unit time and unit length. ions they obtaina=3.5. More rigorous calculationg30]

Since each annihilation makes two kinks disappear, we haV/8iVé @=2.27 if domains are completely uncorrelated, and
a=3.56 if correlation effects between neighboring domains

n(t)=2n(t)(X=0:t)=2n(t);(X*;1), (54) are taken into account.
where the second relation derives from the fact thgt=0 2. Noise-dominated regime
implies dyJ =0. Now the current is
By approximating f (X)) with f(X) (f is a generic func- Fa21 g
tion), and by neglectingR%; (X) with respect td?g(x*),_we JX*:t)=— 2(r)n2 §§ (61)
finally obtain the following expression for the currentifi: 0 X*
a 1 The equation fon(t) is written as
* o) — Ip* *Y) 4 * * *
IO == g S{RL(X) +RE(X) Jg(X*) | o
n(t)=— (1) |n*(t) (62)
Foa’? 1 dg 55 mj 9
_ — =
2mp X X X* and the solution is
s . ~ 1/3
1. Deterministic regime — — — | 3agd'(l/a)
X(t)=Xo(tltg) 3, Xo=|———| , to=1/Foa.
If the noise term is negligible, ()=Xo(t/to) 0 m% 0 0
(63)
* a 1 * * * * * - . . B .
JXE == 7 ;[RJX )+RI(X*)]g(X*). (56) So, we will have logarithmic coarsening at “small” times
0 and a powerlike one at later times. The crossover time is
Let us consider separately the two limiting cases. Wherfietermined by the relationaf ) In(te/t*) =Xo(tc /o). By
A=0, by using Eq(51), the current is written as neglecting the logarithmic dependencalso because
>1,), it is found that
J(X*:t)=—4davg(la)n?(t)exp — kolan)  (57) o |3
to~tgl —| . (64)
and Eq.(54) becomes ¢ 0( Kxo)
n(t)=— 8avg(Lla)nd(t)exp— kol an), (58) So, the ratio between the crossover time in the presence of

a strong asymmetry and the crossover time in the absence of
whose solution gives, at large times the A term is approximately given by
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3 jes(Mg)e(x)+Ke"(x)=0, (67)
(65)

tc(}\m0> \/R) N( Ko)s_( )\mo

to(A=0 N o . . .
ol ) vK whose solution is again an exponential function. So,Xor

It is important to stress the cubic exponent in the previous~ *+ M) =My~ €& ", ,V)"th =\~ Jes(mo)/K. In our
expression: even a not large value af(«,) gives rise to a  €XPression ofes[Eq. (9)], jes(mo) = —2» and« reduces to
logarithmic coarsening that proceeds for a much longer timefo= V2»/K. _ - ) .
because kink interaction is stronger and therefore a lagger ~ Conversely, in model Il there is no finite zerojigs. This

is necessary so that noise gets the better of the determinisfi@Plies that the slope increases with no upper limit: for
regime. =0, as shown by Hur¢t al.[23], the maximal slopé in

We want to emphasize that in the noise-dominated rethe profile is asymptotically proportional to the size of the
gime, the actual value af is much less relevant than in the mounds: Mg(t)~X(t). Since the potential energy

K\

deterministic regime, because of the power-law character df(m) [U’'(m)=—jegm)] has no minima, it is no more
the coarsening. possible to define domains and domain walls, i.e., kinks.
Concerning the time dependence of coarsening, the only
VIIIl. DISCUSSION existing numerical results are the ones found by Hetrdl.

[23]. According to their simulationdin the presence of
The main result of the present paper is that “coarsening,gisg, X(t)~t" with n=0.22, a fairly small valu§32]. No
laws” do not change if the symmetry-breaking currggfis  (rigorous theoretical derivation oh is available at the mo-
put in the problem(at least, as far as a continuum local ment. Some scaling arguments—applicable to noiseless
description is valid: see belgwThis is mainly due to the growth—can be found in Rost and Krjg3] and in Gol-
fact that the functional form of the kinks does not change, ag,pqvic [34]: The former given<1/4 while the latter gives
shown by the exact solution we have given in Sec. IV foryq equalityn=1/4[35].

their profile. A final question we want to face now is how narrow kinks

So, a first question is how general is this result if We A actuall P
. . y are. In the limitxmy>+/vK, from Eq. (22) we
modify the surface current, and therefore E§8). A first have . =\my/K and K_=2V7)\m0. A simple inspection

. . . 2 _ 12
opt\rl:ous modlflcat|o|r_1 V‘{Ogld be to r.eplae}gﬁl(m )l_)‘m”r:? shows thaf\]=[K]=lengtt? time . Previous evaluations
with a more complicated expression of ne slape This suggesf{6,16] A\~K~Fl3 . This expression foK is surely

corresponds to having a depending onm; in fact, A wrong if thermal detachment plays an important role. Con-
=\(m?)=2A"(m?). Since in the late stages of growth the versegiy i\ and K—or mgrey precise?y \(m2) and

slope is almost everywhere equal tomg, \ is almost ev- 2 ) .
erywhere a constant equal )t((mg). Is it possible to simply K(mO)—qre of the same order O.f magnitude, We.(.)btam.
replace\ by \(m3) in the final results? This should not be a ~Mo. Th_|s means that the width of the positive Kink
bad approximatign as suggested by.the analysis of EB) (=lk,) is nothlng but the inverse of.th.e value of the con-
when\ depends o,rm In fact, the asymptotic behavior .of stant slope in the surface proﬁ!e: S0/ is determmec_j_by
M(x) (the relevant oﬁe for ki;’lk interactiprand the values the symmetry of the crystall latticeno=1/a and_the positive

f n be found by linearizing the differential tion k|nI§ is as narrow as a lattice constant. In thl_s case, our Qe—
of k. can be Tou y linearizing e ditierential equatio scription would break down, because the regions of positive
with respect tomo—M(x) for a positive kink and to-mo curvature in the surface profile would correspond to a dis-

TM(x) for a negative '."”"(”T‘ bpth cases, in the I|m2|t< continuity of the slope, i.e., to angular points, that are not
— ), I_Secause of the linearization, only the valNémp) _ compatible with a local continuum equatiéee].
enters in the problem and therefore determines the profile.

In a similar way, we can take into account a possihnle
dependence of the quantitg. In this case, such a depen-

dence might arise from a slope-dependent mobility31}— The kink picture not only has allowed one to find the
if K has an equilibrium origin—or from the dependence oncoarsening law in the presence of the symmetry-breaking
the terrace length of the probability to nucleate a new ter- term, but it has also given a qualitative description of the
race[6], if K derives from nucleation noise. dynamics that allows a better comprehension of the evolu-

Let us now discuss the choice of the slope-dependent cukion of the system: the widening or the narrowing of a kink,
rent: jes= vm(1—m?/mg). The only features we require to the consequent different velocities of kinks and B, the
have a phase separation processjagem=0)>0 (to make conservation of the order parameter seen as a kinematical
the flat surface unstableand jeg(my)=0 for some finite constraint on kink movement, the difference between the
value mg [indeed,my must be the first zero ofgg]. These  ‘“real” force acting on a kink and the “effective” force felt
features define the so-called model I. by the kink, because of such constraint.

Modifications of jgg inside this model do not change the  In this respect, the most important consequence of the
given picture, as suggested by the analysis of the stationafyreaking of symmetry is that negative kinks feel an effective
profile of the kink(for the sake of simplicity we put=0).  repulsiveinteraction with the nn kinkgbut attractive with

IX. CONCLUSIONS

If we linearize the equation the nnn ones It is important to stress this point because
coarsening is the result of a global attraction between kinks:
jegm)+Km”"(x)=0 (66) if kinks repelled each other, the configuration wXh=const

would be stable.
with respect toe(x) =my—m(x), we obtain Finally, the kink picture has provided the condition of
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applicability of the local theory:
OGO =Mi(60) + 2, M0 =M, (==)]

! K(mo) > (69
— =3 a.
A
<+ oMM £ M (00~ M ()] (A1
If this relation is not fulfilled, a different method to study =
coarsening should be used. In Réf] we showed that in this — M (x,)+ om A2)

case the evolution of the surface is governed by a nonlocal
current; alternatively, we can keep a local description, but we
must add a singular term to the currgntand couple the
Langevin equatiom;z(x,t) = —ad,j with specific evolution
equations for the angular points. It would be clearly interest- a 1>
ing to check if a different coarsening process may arise from j
an “angular point” picture.

To our knowledge, the curreri®) has not been formerly ~ M; depends onx and t through the combinationx(
studied. The closest model is the one considered by Strosciov;t) and M/ is the derivation with respect to all of this
et al. [18] in two dimensions, where the Mullins term argument. We will also use the notatiohM to mean the
[Km”(x)] is replaced by a higher order opkm™” (x)] and  same kind of derivation. The single kink profile is found by

the resulting equation is studied numerically. Clearly, in twosimply dropping the sur; and the term inv in Eq. (A3):
dimensions analytical treatments are much more difficult;

which gives rise, once replaced in EG?3), to

. M, _
—UJ-M]-'-l-vjﬁj]:ij[m(x,t)]. (A3)

anyway, a humerical solution of the model studied in the —a 1u°M D,i[M;]. (A4)
present paper is available at the moment. One reason is that
in two dimensions, even the model withopgg is not yet It will be useful to consider, together withl;, also its

fully understood, since the evolution equation f(x,t)  spatial derivativeM; which is localized around= X We
[37] is no longer equivalent to the Cahn-Hilliard equation. define alsol\7lj’ through  the reIationj’(x)zDXMj’(—x).

They satisfy the relations
ACKNOWLEDGMENTS

| warmly thank Joachim Krug for several useful discus- —@ '0jM;(x)=D,[Kd;—U"(M;)+\M/+xM;d,]
sions and for a very careful reading of the manuscript. | also X M!(X) (A5)
gratefully acknowledge the Alexander von Humboldt Stif- an
tung for financial support. _ _
LM (x)=[KdZ—U"(M))+AM/ +XM;d DM/ (x).
APPENDIX A: LANGEVIN EQUATIONS FOR THE KINKS (A6)

1. Absence of noise Now, let us multiply(A3) by M/ (x) and integrate orx.

The starting point is the following multikink expansion, By defining 5vjEvj—v?, we can write:

12 fdxM (x)[ SviM| +v, P ] fdxM D,j[m]+a"~ 12 fdxM M. (A7)

The next step is to replaga(x,t) =M;(x) + ém; in the currentj[ m]. The definition of the nonlinear part of the potential
U(m) [or equivalently of the current)’(m)] is self-explanatory.

jlm]=Km"—=U’(m)+xmm’
=KM|”+K5m|"—U'(M,+5m,)+)\(M,+5m,)(M{+5m|')
:KMi”—i-K5mi”—U’(Mi)—U"(Mi)émi—U,’\‘L’i
—H\MiMH—)\émiMi’+)\Mi5mi’+)\5mi5mi' . (A8)
The three terms that do not depend &m; once Eq.(A4) is used cancel the terin=i in the last summation of EqA7);

omi is simply written asEj;&iMj’, while all the other terms for the moment remain unchanged. So, the right hand side of Eq.
(A7) is rewritten as

RHSW):f de/Ii’(x){j; [KDM{ +a~ oM/ 1=D,[Ug, ;+U"(M;)dm ]+ D, SmM/ +M;sm/ + sm;om| ]
(A9)
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Let us consider separately some terms:

f dxM! (x) >, KDXM}’=f dxKémd2D, M/, (A10)
J#i

—f dxM’(x)Dx[u"(Mi)ami]z—f dxU"(M;)smD,M/ , (A11)

xfdeA{DX[amiM{+5mi’Mi]:>\Jdx[amilvl(+2Mi5m{]DX|\7|{+>\fdxami[M{JrMidx]Dxmi’. (A12)

Equation(A9) is therefore rewritten as

RHSJW):f dxsm[Kd2—U"(M;)+ XM/ +AM;d,]D,M/ + de/Ii’JZ,i a toM/

+ f dxmi’[_DxUl,\JL,i"')\Dx( Sm;M{ +2M;m’ + dm;sm/)]=(A)+(B)+(C). (A13)

This way, Eq.(A7) takes the form (LHS left-hand sid& LHS|x7=(A) +(B)+(C).
By using Eq.(A6),

(A)=a—1f dxM’JEﬂ [—viM/], (A14)
which can be summed tdj{, giving
(A)+(B)=a’lf dxM(; (v)—v)IM] (A15)
and subtracting LH$),
(A)+(B)—LHS|x7=—(C), (A16)

that is to say:
-1 O\/nn’ ’ . 'Y &MJ 'V ’ ’ ’ ’
a 2 (vj=vi)(M{,Mj)—v; Mi’a_v- = | dXM/[D,Uy. ;= ADy(6mM{ +2M;ém’ + sm;ém/) |
i

=(C1)+(Cx)+(C3)+(Cy). (A17)

In the previous equation we have used the following scalar product:
+ oo
(R,S)=J dXR(X)S(x). (A18)

The three terms in square brackets on the right-hand[¢idg) + (C5) + (C,)] represent the effect of the symmetry-breaking
current.

By integrating by parts and by using the definitionr\df ,
(C)=M{(—=x),U{L)- (A19)
If we define the functiof(x,y)=U"(x+y) —U’(x) —yU"(x), thenUy_;=G(M;,ém;). In the following, we will also make
use of the functiord (x,y)=U(x+y)—U(x) —yU’(x). It is obvious thatG(x,y) = a,U(x,y).

We observe thati) G(M;,0)=0; (ii) G may be written as a Taylor expansion whose generic term contamg'{; (iii) G
is not linear iném; , but if we use the binary interaction approximation, it is indeed linear. This approximation corresponds to

(zsmi>“~j2>i [M,-—M,-(—oo)]“+j2<i [M;—M;(s)]". (A20)

In this approximation, we obtain
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(Cy)=2, fdxMi’(xi—x)G(Mi(x—xi),Mj—Mj(—oo))~|—jz<i fdxMi’(xi—x)G(Mi(x—xi),Mj—Mj(oo)). (A21)

P>i

We must observe tha¥l| is not vanishing only whemx

~X;; furthermore[M;—M;(==)] goes to zero when)

The procedure to follow for the treatment of the other
terms (C;) is similar. In other words, iR(x) and S(x) are

Xx>x; or (—) x<x;. On the basis of these considerations, itfunctions that are localized respectively xa and x,, we

is possible to write

(Cy=2, JMdXM{(Xi_X)G(Mi(x_xi)aAMj)

1> Xj

+2 " dxM/ (xi—X)G(Mi(x—X;),— AM)),

j<i — o
(A22)
whereAM;=M;(») —M;j(—»).
SinceM/ (x) is an even function ok:
Xb
f dxM/ (x;—Xx)G(M;(x—X;),cons})
Xa
=0(M;(x—x),cons)|® (A23)

and (C,) can be written as

(Cp) =2, [O(M;(=),AM))=D(M;(x;—x)),AM))]

P>i

+J§ [OM;(=x),— AM;)
—OM(—),—AM))]. (A24)

At the first order in the small quantitiegM;(x;—x;)
—M;(x»)] (= respectively forj>i andj<i), we have

(cl>=—§ [Mi(X;—X;) — M;(%)IG(M;(),AM;)

+ 2 IMIOG=x) = Mi(=)1G(M; (=), ~AM,).

(A25)

In the following, we will restrict ourselves to nearest-
neighbor kinks interaction, and therefore only the terms

make the approximation
R(X—=X1) S(X—X2) =~ R(X—X1) S(X1 = X2) + R(Xz—Xy)
X S(X=X2) (A28)
and then we retain only the term corresponding to the func-
tion decreasing more rapidlffor example, ifR(x) was a
Dirac delta function, only the first term would be retained,

because the second one would be exactlyz&we give here
only the results.

(Co)=MIMi 1(Xj+1=X) =M1 1()]=[Mj_1(X;—Xi_1)
_Mifl(oo)]}fi:ydx(Mi’)zv
(C3)=0,

A onn A 5
(Ca)==5(AMi4 ) M{(Xi+1=X)+ 5 (AM;y)
XM{ (X —X_1).
The expression@;) =0 means that such a term is always of
higher order than the others.

From now on, notation must take into account explicitly
the existence of two different classes of kinks. By using the
following results

M g(X) — M g(0)=— B2moexp(— kgX) when Xx—o
Rg(x)=exp( — xgx),

AMi:ﬁZmo,

U”(imo)ZZV,

e ’ 2 2 2
fo dx{Mg(x)] =§m0;<ﬁ

=i=+1 will survive in Eq.(A25). If we also use the fact that it is straightforward to write

G(Mi(£2),£AM;+1)=FAM;.,U"(M;(£x))
(A26)

we obtain the following final expression:
(C)=[Mi(Xj 11— %) —M;()JAM; ;U"(M;(=))

+[Mi(Xi—1— X)) —Mi(—2) JAM;_ U"(M{(—=)).
(A27)

(C1)=8vm[Ru(Xi) —Ra(Xi—1)],

(C2) = B(413Mix pN[R_ (X)) —R_5(Xi_1)],
(A29)

(Ca)=— BAMgr sA[R5(Xi) —Rp(Xi—1)].

We can now put together EqA29) with the previous
ones. A further approximation is to neglect the “deforma-
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tion” of the kink profile, due to its velocity, and to suppose So, Eq.(Al17) is finally
that kinks are immobile in the absence of interactions. This

, btai AM; .
way, we obtain _aflT'z AM|X;—X{|Xj=(C1) +(Cp) +(Cy).
]

a 1> vj(M{ ,M/)=(C1)+(Cy)+(Cy), (A30) (A36)
J

where the LHS can be further developed: 2. The effect of noise

The term of noisesF(x,t) in Eq. (2) corresponds to a
a—12 vj(|\~/|i' ,Mj,):a—1z va de/Ii’(x)Mj’(x) term n(x,t)=_(9X6F(x,t) on the right-hand S|_de of E¢A3). y
] ] To see how it affects the kink movement, it must be multi
plied by IT/I{(X) and integrated ox. Since the LHS of Eq.
=a 1> vlf dxD,M/ (x)D5 "M (x) (A36) indeed corresponds to minus the LHS of E43), if
i we call #z(t) the noise term to be added to
(C)+(Cy)+(Cy) in Eq. (A36), it will result in
=a*12 vJ-J dxMi’(x)DX’le’(x).
] - -
n-(t)z—f dx M/ (x) n(x,t)=f dxa,M/ (x) SF(x,t).
(A31) 1 I X 1
(A37)
We therefore have to determine the inverse of the opera- ) )
tor D,.. By following Kawasaki and Ohtf26] The following properties are foun@7]:

. 1 (m(1)=0 (A38)
D, A(x,t)=—§ dx'|x—x"|A(x",t).  (A32)
and
The “integration constants” appearing when the oper&tgr
|(??|enva2rt7e]z;1 are shown to be irrelevant for the kink dynamics <77i(t)77j(t/)>:2F05(t_tI)f deA’(x)DXMj’(x)
By applying Eq.(A32) to Eq.(A31): _ —4mgF0(—1)i’j|xi—xj|6(t—t’).
f dxM; (x)Dy *M] (x) (A39)
To derive the spatial correlation between noise, we have used
=_ EJ' f dxdxX M/ (x)|x—x'|M/(x") (A33)  the definition ofM{ and inverted the operat®, . Finally,
2 . we have used the fact thAtMiAMj:4m§(—1)'*', a rela-
tion that can be used also for the LHS of E436). So, we

~— %|Xi_xj|f J dxdx M/ (x=x)M/ (x—x;) obtain the following system of coupled Langevin equations:
A34 o .
( ) —Za_lméz (—1)|_]|Xi—Xj|Xj
1 j
T glTXIAMAM;. A3 (COH(CPH(CHtm(D.  (AdD)
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