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Kink dynamics in a one-dimensional growing surface

Paolo Politi*
Fachbereich Physik, Universita¨t GH Essen, D-45117 Essen, Germany

and Dipartimento di Fisica dell’Universita` di Firenze e Sezione INFM, Largo Enrico Fermi 2, I-50125 Firenze, Italy
~Received 16 December 1997!

A high-symmetry crystal surface may undergo a kinetic instability during the growth, such that its late stage
evolution resembles a phase separation process. This parallel is rigorous in one dimension, if the conserved
surface current is derivable from a free energy. We study the problem in the presence of a physically relevant
term breaking the up-down symmetry of the surface and that cannot be derived from a free energy. Following
the treatment introduced by Kawasaki and Ohta@Physica A116, 573 ~1982!# for the symmetric case, we are
able to translate the problem of the surface evolution into a problem of nonlinear dynamics of kinks~domain
walls!. Because of the break of symmetry, two different classes (A andB) of kinks appear and their analytical
form is derived. The effect of the adding term is to shrink a kinkA and to widen the neighboring kinkB in
such a way that the product of their widths keeps constant. Concerning the dynamics, this implies that kinksA
move much faster than kinksB. Since the kink profiles approach exponentially the asymptotical values, the
time dependence of the average distanceL(t) between kinks doesnot change:L(t); lnt in the absence of
noise, andL(t);t1/3 in the presence of~shot! noise. However, the crossover time between the first and the
second regime may increase even of some orders of magnitude. Finally, our results show that kinksA may be
so narrow that their width is comparable to the lattice constant: in this case, they indeed represent a disconti-
nuity of the surface slope, that is, an angular point, and a different approach to coarsening should be used.
@S1063-651X~98!07307-3#

PACS number~s!: 05.70.Ln, 68.35.Fx, 02.30.Jr
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I. INTRODUCTION

A crystalline surface growing under a flux of incomin
particles from the vapor phase represents a typical exam
of an out-of-equilibrium system. Its microscopic evolutio
may be described as follows: once the adatom has arrive
the surface, it performs a thermally activated diffusion p
cess until it is ‘‘trapped’’ somewhere, or it evaporates
coming back to the vapor phase. Which surface relaxa
mechanism~surface diffusion or evaporation-condensatio!
indeed prevails depends on the temperature and the spe
parameters of the material@1#. Anyway, for a wide class of
materials~mainly metals!, at the relevant temperatures fo
molecular beam epitaxy~MBE! desorption may be ne
glected. In this case, two different ‘‘traps’’ may be effectiv
another adatom~giving rise to a nucleation phenomenon!, or
a step. If we limit ourselves to the case of a high-symme
surface, there are no preexisting steps and therefore the
tioned step belongs to a growing island. Once islands h
coalesced, leading to the completition of one layer, st
should disappear and the whole previous process should
again.

The previous qualitative picture applies to the case o
stable layer-by-layer growth. In reality, it is hindered both
noise and by possible instabilities; sources of noise are fl
tuations in the flux of incoming particles~shot noise!, in the
surface diffusion current~diffusion noise!, and in the nucle-
ation events~nucleation noise!. While the first two have been
well studied in the context of several different models@2#,
the latter one still needs a more basic comprehension@3#.

*Electronic address: politip@fi.infn.it
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Concerning deterministic instabilities, the main o
responsible—and perhaps the sole one responsible for a
moepitaxial high-symmetry surface—for the destabilizati
of the flat surface is now known as the Ehrlich-Schwoe
effect @4#: an adatom approaching a step from above or
low may have different probabilities of attachement. If t
sticking from above is discouraged, an adatom that has
possibility to choose between two different kinds of steps~an
ascending one and a descending one! will stick preferably to
the ascending one, thus determining an uphill current. I
important to remark that this is a purely out-of-equilibriu
effect, because at equilibrium detailed balance forbids su
current.

Even without entering into details, as will be done in t
next section, it is possible to explain here the effect of suc
mechanism. In fact, as first pointed out by Villain@5#, the
resulting surface currentj 5nm (m5]z/]x being the local
slope of the surface andz the local height!, once put in the
evolution equation]z/]t52] j /]x gives rise to a diffusion-
type equation:] tz52n]x

2z, where the negative sign of th
diffusion constant (2n) is responsible for the instability o
the flat surface (z5const). In the present paper, we w
mainly be concerned with the late stages of this instabil
when additional and nonlinear terms must be introduced
describe the dynamics of the surface. In the next section
will introduce a more general expression for the surface c
rent j and we will take into account the breaking of thez
→2z symmetry, induced by the fluxF of atoms.

II. THE SURFACE CURRENT

The study of a growth process may ideally be divided in
two main steps: the first one starts from some microsco
281 © 1998 The American Physical Society
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point of view and should arrive to a continuum description
the surface/interface; the second one may evenassumea
given evolution equation and study it. Most of the difficulti
encountered in a theoretical study of MBE are related to
first step. In the present paper, we will limit ourselves to
one-dimensional high-symmetry surface, and in this sec
we will introduce and justify a specific Langevin-type equ
tion.

The local surface heightz(x,t) is generally supposed t
satisfy a local equation of the form ] tz5aF
1F(]xz,]x

2z, . . . ),F being the incoming flux,a the in-plane
lattice constant, andF a function of the local profile of the
surface~the out-of-plane lattice constant is set equal to o
i.e., z is adimensional!. The underlying hypotheses hav
been discussed in Ref.@6#, where we have shown that th
appearance of angular points in the surface profile may
treated correctly solely through the introduction of a non
cal equation. We will take up this point again at the end
the article.

The flux F contains a constant partF0, which is ‘‘elimi-
nated’’ by redefiningz(x,t): z→z2aF0t, and a fluctuating
part dF(x,t) which represents the so-called shot noi
which is supposed to follow a Gaussian-like distribution:

^dF~x,t !&50,

^dF~x,t !dF~x8,t8!&52F0d~x2x8!d~ t2t8!. ~1!

In the limit of negligible desorption, and if overhangs a
forbidden, surface growth proceeds by conserving both m
and volume: therefore, the functionF must be derivable
from a surface currentj , and the evolution equation will be
written in the form

] tz~x,t !52a]xj 1adF~x,t !. ~2!

The central question is which currentj governs the evolution
of the surface, a still debated question even for the simpli
model of a one-dimensional surface, as shown by the follo
ing discussion on the different terms appearing inj . Symme-
try arguments simply tell thatj does not depend onz @7#, but
on its derivatives (m5]xz, m85]x

2z, m95]x
3z, . . . ) and

that—on a high-symmetry surface— it must be an odd fu
tion of x: so, a term proportional tom or m9 satisfies this
request, but if proportional tom8, it does not.

A. Ehrlich-Schwoebel current

In the Introduction, we mentioned the Ehrlich-Schwoeb
effect, which gives rise to a slope-dependent current:j ES(m).
Since it must be an odd function ofm, its form at smallm
will be j ES5nm. The coefficientn depends@8,9# on the flux
F0, the diffusion lengthl D , and the Schwoebel lengthl S : l D
measures the typical linear distance traveled by the ad- a
before meeting another one and forming the nucleus o
growing island. It represents the ‘‘maximal’’ size of a te
race, because ifl . l D the probability to nucleate a new islan
on it is very high; during the first stages of growth, when t
surface is still more or less flat,l D is also the typical size o
a terrace. It is not so when an instability develops: in t
case,l may be much smaller thanl D and the slopem51/l
may be fairly large. Indeed, the slope 1/l D discriminates be-
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tween a nucleation-dominated regime (m!1/l D) and a step-
flow regime (m@1/l D): the latter is generally relevant fo
vicinal surfaces, which grow through sticking of adatoms
preexisting steps; anyway, if a flat surface develops an in
bility with regions of high slope, such a regime becom
important also for high-symmetry orientations.

The second relevant length, the Schwoebel length,
measure of the asymmetry in the sticking coefficients of
adatom to a step. Its simplest form@1# is l S5a(D2 /D1

21), whereD1 andD2 are such coefficients for an adato
approaching the step from above (D1) and below (D2). The
existence of an Ehrlich-Schwoebel effect means thatD1

,D2 and thereforel S.0. To describe the meaning ofl S , let
us consider a terrace of sizel (, l D): if l S! l , only a fraction
l S / l of the fallen adatoms will contribute to the uphill cu
rent, and thereforej ES5(F0l )( l S / l )5F0l S , since the num-
ber of atoms arriving per unit time on a terrace of sizel is
nothing butF0l . Conversely, ifl S@ l all the adatoms will
stick to the ascending step, and soj ES5F0l . The simplest
interpolation formula, valid for any value ofl S , is

j ES5
F0l S

11 l Sumu
, umu.1/l D . ~3!

This formula also allows one to obtain a semiquantitat
expression for the parametern: in fact, whenumu.1/l D , Eq.
~3! must match the expression valid at small slopes:j ES

5nm. The result isn5F0l Sl D
2 /( l S1 l D). It is important to

remark that all the previous considerations may be m
more rigorous@6#, but in this section we are mainly inter
ested in justifying the expression for the currentj , rather
than in deriving it.

The main characteristic of the Ehrlich-Schwoebel curr
just discussed is that it has no zeros other thanm50 and
m56`. A zero in j ES is extremely important@10# because
the other terms inj will be seen to depend on higher-ord
derivatives ofz(x,t). So, a constant slopem0 may be a sta-
tionary slope if and only ifj ES(m0)50. An extra zerom0
may have different origins: the symmetry of the crystal l
tice @10,11#, nonthermal relaxation mechanisms@12#, or a
transient mobility of the adatom just after the depositi
@13#. For example, the slope at 45° corresponds in a cu
lattice to the high-symmetry orientation~11!: we expect that
j ES vanishes on it, as it vanishes on the~10! (m50) and~01!
(m5`) orientations. A different example is the following: I
atoms falling in the vicinity of a step have a higher probab
ity to land on the lower terrace, or to kick down the st
adatom, a downhill currentj ↓ , proportional to the density o
steps and therefore to the slopem, will appear: j ↓52n8m.
So, if n.n8, a zero will appear when (j ES1 j ↓)50.

Whatever is the origin of extra zero~s! in the slope-
dependent current, we can introduce two different mod
according to the presence~model I! or absence~model II! of
zeros at finite slope. The simplest expressions ofj ES for the
two models, having the correct symmetry properties are@14#

model I: j ES5nm~12m2/m0
2!, ~4!
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model II: j ES5
nm

11 l D
2 m2 . ~5!

Model II does not correspond to a phase separation pro
~see Sec. III!: it will be discussed in Sec. VIII.

B. Mullins-like current

The most famous ‘‘equilibrium’’ current is perhaps th
one (j M) introduced by Mullins@15# forty years ago, to
study the relaxation towards equilibrium of a nonsingu
grooved surface. A simple derivation starts from writingj M
as the gradient of a chemical~surface! potential: j M5
2G]xm, whereG is the adatom mobility, and afterwards
derivem from a surface free energy:

m5
dE

dz~x!
, with E5sE dxA11m2a2. ~6!

By combining the different equations, in the limit of sma
slopes we obtain

j M5Km9~x! ~7!

with K5a2Gs.
The usage of this expression in our problem may be qu

tionable in at least two respects: First, it applies to a non
gular surface, i.e., above the roughening transitionTR ; sec-
ond, it applies to a close-to-equilibrium surface. Concern
the first remark, our surface is a high-symmetry one a
therefore almost necessarily belowTR , because for a high
symmetry orientation the roughening temperature is equa
or nearly equal to the melting temperatureTM , while ordi-
nary temperatures for MBE are well belowTM . Neverthe-
less, our surface—which is strongly out of equilibrium—
contains a lot of steps because the incoming flux makes
surface rough@16#: therefore, the surface current should
nonsingular at zero slope.

The latter remark is more ‘‘critical’’: the Mullins curren
derives from thermal detachment of atoms from steps in
der to minimize the surface free energy. It is not clear if su
a process is effective in the presence of a fluxF. For ex-
ample, Stroscio and Pierce@17# state that thermal detachme
is negligible in the homoepitaxial growth of Fe~at least at
room temperature! and therefore they do not write@18# such
a term in the current. Anyway, it has been shown@6,16# that
the current~7! may derive also from nonequilibrium effect
nucleation noise and diffusion noise. The first one should
dominant and correspond to the value@6,16# K5F0l D

4 .

C. Symmetry-breaking current

The terms in the surface current that have been introdu
so far not only satisfy thex→2x symmetry @because
j (2x)52 j (x)#, but they also fulfill the up-down symmetry
corresponding to the change of sign ofz. In fact, if z→2z
both j ES and j M change sign. However, there is no reason
expect that surface growth proceeds by conserving such s
metry, since the flux breaks it.

A symmetry-breaking~SB! term is intrinsically nonlinear,
because any current of the formj ;]x

nz(x,t) changes sign
with z. The lowest order expression that changes sign witx
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but does not change sign withz is

j SB5]xA~m2!, ~8!

whereA is any even function of the local slope. The simple
form for A, A5(l/2)m2, has been introduced by Sunet al.
@19#. It is also called the ‘‘conserved Kardar-Parisi-Zha
term,’’ because in Eq.~2! it looks like the Laplacian of
(]xz)2, i.e., the nonlinear term of the KPZ equation@20#.

The current~8! is not derivable from a free energy. A
pointed out by Somfai and Sander@21# it is necessary to rise
the order ofj SB to make it derivable from some free energ
„for example, j SB;]x@(m8)2#5(d/dm)*dxFSB with FSB
;(m8)3

….
Before proceeding, let us discuss the physical origin

j SB. When there is a gradient in the densityr of adatoms, a
current of the formj 52D]xr is expected, whereD is the
diffusion constant. In the case of a growing surface, the
plicability of the previous expression is not obvious, becau
steps are sinks for diffusing atoms and—at least if therm
detachment is forbidden—interlayer diffusion is absent.
spite of this, the above expression may help in understa
ing: in fact, adatom density on a terrace depends on its sizl ,
because a larger terrace collects more atoms from the
than a smaller one. So,r5r( l )5r(umu). In other words, the
function A appearing inj SB seems to be proportional to th
adatom density itself.

This interpretation can be made more rigorous for la
slopes (umu51/l .1/l D), where nucleation of new terraces
absent andr can be simply determined by solving the diffu
sion equation] tr5F01D]x

2r in the quasistatic approxima
tion (] tr50) and withr(0)5r( l )50 as boundary condi-
tions ~i.e., steps are perfect sinks!. The resulting average
density on the terrace isr.(F0 /D) l 2 and the current is
j SB.2F0]x(1/m2). This expression agrees with those det
mined, with different methods, by Politi and Villain@6# and
by Krug @22#. Hunt et al. @23# suggest thatj SB may derive
from the sticking asymmetry induced by the Ehrlic
Schwoebel effect: nevertheless,j SB does not vanish even i
l S50 @6,22#.

One could ask why the average value ofr is taken. The
answer is that inhomogeneities in the adatom density o
given terrace give rise toj ES. In fact, if no Ehrlich-
Schwoebel effect is present,r(x) is symmetric with respec
to the center of the terrace and therefore the average valu
]xr vanishes. Conversely, ifl S.0 then^]xr& terraceÞ0 and it
corresponds just toj ES. This remark stresses the ‘‘similar’
origin of j ES and j SB. It is likely that a systematic derivation
of the surface current should give all the terms we ha
introduced:j ES ~which depends on the slopem), j SB ~which
depends on the curvaturem8), and j M ~which depends on a
higher order derivativem9). Anyway, a rigorous derivation
is still lacking at the moment, above all for a high-symme
orientation.

D. The current of our model

In the following, we will study the dynamical evolution o
the surface, as determined by the current

j 5 j ES1 j M1 j SB, ~9!
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where

j ES5nmS 12
m2

m0
2D , ~10!

j M5Km9, ~11!

j SB5lmm8. ~12!

The reason for our choice is clear: We want to study
effect of the symmetry-breaking current (j SB) on the phase
separation process determined by the other two terms o
surface current (j ES1 j M), and for this aim we choose th
simplest expression forj ES—which must have a zero at
finite slopem02 and for j SB—for which we takeA(m2)
5lm2/2. In the last section, we will discuss how the conc
sions depend ornot depend on the present choice.

III. EVOLUTION IN THE ABSENCE
OF THE SYMMETRY-BREAKING CURRENT

In the ‘‘language’’ of surface growth, the evolution of th
surface proceeds as follows: After a timet* an instability of
the flat surface with a well-determined wavelengthL* devel-
ops. In this linear regime,L* is constant and the amplitud
increases exponentially. Afterwards, because of the non
earity of j ES a coarsening process takes place: the wa
lengthL(t) of the moundlike~or pyramidlike! surface profile
increases in time, while the maximal slope tends to the c
stant values6m0. So, the surface is ‘‘made up’’ of neigh
boring regions where the slope is alternately~nearly! equal to
1m0 and2m0.

The first stages of growth can be analyzed by lineariz
Eq. ~2! with the current~9!:

a21] tz~x,t !52n]x
2z~x,t !2K]x

4z~x,t !, ~13!

which shows@6,9,23# that the flat surface is unstable again
deformations of wavelength larger thanLc52pAK/n. The
most unstable mode corresponds toLu5A2Lc and its ampli-
tude grows as exp@(an2/4K)t#. So, L* 5Lu and t*
5(4K/an2).

The nonlinear profiles of the mounds are determined
stationary solutions of Eq.~2!, that is to say as solutions o
the equationj 50:

j ES~m!1Km9~x!50. ~14!

This equation can be derived by the following Lagrangia

L5~K/2!m822V~m!, with V8~m!5 j ES~m!, ~15!

which corresponds to an anharmonic pendulum, once
have identified the slopem as its spatial coordinate andx as
the time. Since the potentialV(m)5(n/2)m2@12m2/2m0

2#
has two symmetric maxima in6m0, the period of the oscil-
lation ~i.e., the wavelength of the surface profile! diverges
when its amplitude~i.e., the maximal slope of the surfac
profile! goes tom0. If j ES followed model II,V(m) would
have no maxima and no limitation on the slope would
present.
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By going on with this mechanical analogy, the existen
of coarsening requires a condition on the stationary confi
rations: the period of the oscillation must be an increas
function of the amplitude@24#; a condition that is surely
fulfilled by the potentialV(m), since the quartic correction
has a negative sign. Clearly, coarsening also requires
these stationary solutions are not stable: more precisely,
must be unstable with respect to wavelength fluctuations,
stable with respect to amplitude fluctuations.

The previous mechanical analogy helps in understand
why the surface keeps a regular profile and also allows
to determine this profile at a given time, but it is not effecti
in determining the time dependence ofL(t), i.e., the coars-
ening law@23#. To this end, we must observe that the ev
lution equation for the local slopem ~which represents the
‘‘order parameter’’ of our problem! satisfies the noisy Cahn
Hilliard equation@25#:

a21] tm5]x
2S dF

dmD1h~x,t !, where F5E dxL.

~16!

This equation corresponds to a phase separation proc
where the order parameter is conserved@] t*dxm(x,t)50#.
The system is made up of domains wherem equals one of
the two degenerate minima of the potential energyU(m)
52V(m); domains that are separated by domain wa
move in order to minimize the ‘‘action’’F. Domain wall~or
‘‘kink’’ ! movement is determined both by their~determinis-
tic! interaction and by fluctuations induced by the conserv
noise. We will see that the growing surface~even in the
presence of the symmetry-breaking currentj SB) can be
mapped in a one-dimensional system of interacting kin
that annihilate, so that the average distanceL(t) between
kinks increases in time.

By using this method for the symmetric case (j SB50),
Kawasaki and Ohta@26# have found the equation of motio
for the kinks, which has been then studied by Kawakatsu
Munakata@27#. The final result is thatL(t) grows logarith-
mically with time if noise is absent and grows ast1/3 if noise
is present.

IV. KINK PROFILES

A stationary kinkM (x) is defined as a monotonic solutio
of j @M (x)#50, with M (x) tending to~different! minima of
U(m), whenx→6`. In the present case, there are only tw
symmetric minima in6m0 and therefore only two kinks
M 6(x) are possible, the subscript corresponding to the s
of its first derivative, i.e., to the curvature of the surfa
profile.

The surprising result is that the ‘‘shape’’ of the kink do
not change because of the introduction of the symme
breaking term. To see it, let us replace the expression

M 6~x!56m0tanh~k6x/2! ~17!

in the differential equationj 50:

Km9~x!1nm~12m2/m0
2!1lmm850. ~18!
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We obtain the following second degree equation for the
rametersk6 :

Kk6
2 7lm0k622n50, ~19!

which gives the positive solutions

k65~Al2m0
218nK6lm0!/2K. ~20!

Two limiting cases, corresponding to weak and strong sy
metry breaking, will be frequently used:

lm0!A8nK, k15k25A2n/K[k0 , ~21!

lm0@A8nK, k15lm0 /K, k252n/lm0 . ~22!

So, the effect ofj SB is to create two classes of kinks: kink
‘‘ A,’’ given by the profile M 1(x) and characterized by
width (1/k1), and kinks ‘‘B,’’ given by the profileM 2(x)
and whose width is (1/k2). For a strongj SB, k1@k2 :
kinks A are much narrower than kinksB. It must also be
observed that the product (k1k2) does not depend onl,
since it equals~see the algebraic equation! (2n/K). In other
terms, the effect ofj SB is to shrink kinksA and to widen
kinks B, in such a way that the product of their widths kee
constant.

V. FROM SURFACE DYNAMICS TO KINK DYNAMICS

In this section we will describe the method to solve t
growth equation for the surface-slope profile:

a21] tm5Dx@Km92U8~m!1lmm8# with Dx52]x
2

~23!

in a ‘‘multikink’’ approximation. Since our approach follow
that introduced by Kawasaki and Ohta@26# to study the
above equation in the absence of thel term, we will expose
the main calculations in Appendix A and here we will lim
ourselves to explaining the general lines of the method.

Once a kink is inserted in our problem, it moves with
given ~constant! velocity v0 and a profilem(x,t)5M (x
2v0t), wherev0 is found by solving the eigenvalues pro
lem obtained by puttingm(x,t) in Eq. ~23!. Our system is
made up of an ensemble of kinksA that alternate to kinksB,
and we will look for an approximate solution of Eq.~23! as
a superposition of kinks centered inxi and moving with ve-
locity v i . Because of the interaction between kinks,v i is not
a constant, and depends on the position of the other kink
principle, the nonlinear part ofU(m) ~i.e., the quartic term
m4) gives rise to terms ofn-kinks interaction: we will adopt
a ‘‘binary-interaction’’ approximation, which will be furthe
simplified by limiting to nearest-neighbor interaction. Th
procedure is justified by the fact that we are interested in
late stages of growth, when the distance between kink
much larger than the width of their cores (51/k6): so, they
interact only through the tails of the profiles, which mea
that the interaction decays exponentially, since tanh(kx/2)
.617exp(2kuxu) whenx→6`. For the same reason, th
velocities v i and the accelerationsv̇ i will be considered
‘‘small,’’ because the typical size of the mounds grow
-

-

s

In

e
is

s

slower than linearly: This means that the velocity of t
coarsening process goes to zero, as time increases.

As a final result, we obtain a Langevin equation for t
discrete variablesxi(t), or—equivalently—for the kink-kink
distancesXi(t)[xi 11(t)2xi(t), which will be studied by
translating it in a Fokker-Planck equation.

The treatment of Eq.~23! ~see Appendix A! gives the
following coupled equations for the kink positions:

22a21m0
2(

j
~21! i 2 j uxi2xj uẋ j

5~C1!1~C2!1~C4!1h i~ t !, ~24!

where

~C1!58nm0
2@Rb~Xi !2Rb~Xi 21!#,

~C2!5b~4/3!m0
3kbl@R2b~Xi !2R2b~Xi 21!#, ~25!

~C4!52b4m0
3kbl@Rb~Xi !2Rb~Xi 21!#,

and

^h i~ t !&50,

^h i~ t !h j~ t8!&524m0
2F0~21! i 2 j uxi2xj ud~ t2t8!.

Let us explain the notations: Thei th kink is centered in
xi , and—because of the breaking of symmetry— two diffe
ent classes of kinks exist. In accordance with Sec. IV, th
profiles are given byMb(x)5bm0tanh(kbx/2), whereb5
61. We will assume that thei th kink is of classb ~whatever
is its value! and its nearest neighbors of class2b. The quan-
tity

Rb~x!5exp~2kbx! ~26!

in (Ci) expresses the interaction between kinks, when
distancesuxi 612xi u are large compared to (1/kb).

Equation~24! can also be written in matrix form:Ai j ẋ j
5I i1h i . The matrixA takes into account the kinematica
coupling between kinks, due to the conservation of the or
parameter, andI contains the forces between kinks. The m
trix A can be inverted@27#, giving a tridiagonal and symmet
ric A21:

Ai i
215

a

4m0
2S 1

Xi
1

1

Xi 21
D , ~27!

Ai 11,i
21 5

a

4m0
2

1

Xi
. ~28!

The evaluation ofA21I is trivial:

~A21I ! i5
a

4m0
2S I i1I i 11

Xi
1

I i1I i 21

Xi 21
D ~29!

and the explicit expression ofI i is found directly from Eqs.
~25!:

I i5Rb* ~Xi !2Rb* ~Xi 21!, ~30!
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where Rb* (X) is a linear combination of the two differen
Rb(X):

Rb* ~X![cbRb~X!1dbR2b~X!

with

cb58nm0
22b4m0

3kbl and db5b~4/3!m0
3kbl.

Concerning the noise, it is preferable to work with qua
tities that are not spatially correlated. To this end, the ma
A21 is written as the productPPT and new noise variable
h̃5PTh are defined. SinceP is a bidiagonal matrix whose
nonvanishing elements are

Pi i 5Pi 11,i5A a

2m0

1

AXi

, ~31!

h̃ i is given byh̃ i5Aa(h i1h i 11)/(2m0AXi), and it results
that

^h̃ i~ t !&50, ^h̃ i~ t !h̃ j~ t8!&52aF0d i j d~ t2t8!. ~32!

In order to eliminate the constant factor in the correlator,
simply put h̃ i5A2aF0j i . This way, the final equation fo
kink dynamics is

ẋi~ t !5
a

4m0
2F I i1I i 11

Xi
1

I i1I i 21

Xi 21
G1

A2F0a

2m0
F j i

AXi

1
j i 21

AXi 21
G ,

~33!

^j i~ t !j j~ t8!&5d i j d~ t2t8!.

VI. FORCES AND KINK VELOCITIES

In this section we want to discuss the effect of the sy
metry breaking on the equations of motion for the kink
Since we are here interested in the deterministic part of
interaction, we will not consider the noise. Therefore E
~24! takes the formAi j ẋ j5I i . Kawasaki and Ohta@26# sug-
gest looking onI i as the force acting on thei th kink. Let us
consider the two opposite limits:l50 andlm0@A8nK. For
Rb* (X) we obtain

Rb* ~x!58nm0
2exp~2k0x! ~34!

in the first limit (l50), and

R1* ~x!5~4l2m0
4/3K !exp~2klx!,

R2* ~x!516nm0
2exp~2klx!

in the second one (lm0@A8nK). In the previous equations
k05A2n/K andkl5(lm0 /K)@k0. They correspond tok2

in the two pertinent limits.
In the case of the absence of thel term, we simply get

I i58nm0
2@exp~2k0Xi !2exp~2k0Xi 21!#. ~35!
-
x

e

-
.
e
.

This equation can be interpreted by saying that there is
attraction between kinks, proportional to exp(2k0X). If l
Þ0 ~and ‘‘strong’’!, then we must distinguish between pos
tive and negative kinks:

I i5H ~4l2m0
4/3K !@exp~2klXi !2exp~2klXi 21!#, b.0

16nm0
2@exp~2klXi !2exp~2klXi 21!#, b,0.

~36!

The first comment is that symmetry breaking implies tha
positive kink is attracted~by a negative one! more strongly
than a negative kink is attracted by a positive one. In ot
words, if we assign a mass to a kink, a negative kink weig
more than a positive one, and the mass is proportional to
width of the kink itself.

This interpretation seems to be satisfactory, but if we a
lyze the velocitiesẋi(t) rather than the ‘‘forces’’I i the pic-
ture becomes more complicated. In the limitl50 we have

ẋi~ t !52anFexp~2k0Xi !

Xi 21
2

exp~2k0Xi 21!

Xi

1
exp~2k0Xi 11!

Xi
2

exp~2k0Xi 22!

Xi 21
G . ~37!

So, the effect of the conservation law~i.d. of the matrixA) is
that ẋi(t) depends not only on the positions of the neare
neighbor~nn! kinks (xi 61), but also on those of the next
nearest ~nnn! ones (xi 62). Even more important, the
nnn ‘‘interaction’’ is of the same order of magnitude as t
nn one. While the interpretation of exp(2k0Xi) and
exp(2k0Xi21) in Eq. ~35!, as, respectively, the interactio
with the kinks (i 11) and (i 21), is straightforward, in Eq.
~37! the generic term exp(2k0Xl) is divided by a different
Xj , and therefore a similar interpretation becomes less
dent. Anyway, if we do not ascribe too much importance
the quantitiesXj in the denominator, Eq.~37! says that kink
i is attracted both by nn kinks and nnn kinks: the ‘‘intera
tion’’ between i and i 62 has a kinematical origin~conser-
vation of the order parameter! and indeed depends onxi 62
2xi 61 rather than onxi 622xi . A further comment is that in
the evaluation ofI i1I i 11 two terms cancel exactly, becaus
in this case action and reaction are opposite and equal.

If now we consider the case of a strong symmet
breaking term, the velocity takes the form

ẋi~ t !ub.05
al2m0

2

3K F S 1

Xi
1

1

Xi 21
Dexp~2klXi !

2S 1

Xi
1

1

Xi 21
Dexp~2klXi 21!G

14anFexp~2klXi 11!

Xi
2

exp~2klXi 22!

Xi 21
G
~38!

and

ẋi~ t !ub,052
al2m0

2

3K Fexp~2klXi !

Xi
2

exp~2klXi 21!

Xi 21
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1
exp~2klXi 11!

Xi
2

exp~2klXi 22!

Xi 21
G . ~39!

The surprising result is that the sign of the terms proportio
to exp(2klXi) and exp(2klXi21) is inverted: so —becaus
of kinematics—a negative kink is subject to a repulsive
teraction with its nn kinks. This result derives from the u
balancing of action and reaction. A closer inspection of
derivation of Eqs.~38! and~39! allows to give the following
interpretation: iff i j means the force exerted by the kinkj on
the kink i ~so thatI i5 f i ,i 111 f i ,i 21), then kinematics deter
mines that the effective forcef̃ i ,i 61 is a linear combination
of ( f i ,i 611 f i 61,i) and f i ,i 61. If l50, the first term vanishes
but if lÞ0 it doesnot: Furthermore, for a negative kin
f i 61,i prevails overf i ,i 61 and it corresponds to a repulsiv
force for kink i .

The conclusion we draw from the previous consideratio
is that negative kinks move much slower than positive kin
This results on one side from the fact that a bigger mass
be attributed to them, and on the other side that they
subject to an effective repulsive nn interaction.

VII. FROM KINK DYNAMICS TO COARSENING LAWS

The interesting dynamical variables are the kink-kink d
tancesXi , rather than the kink positionsxi . So, from Eq.
~33! we obtain

Ẋi~ t !5
a

4m0
2F 1

Xi 11
@Rb* ~xi 12!1R2b* ~xi 11!

2Rb* ~xi 11!2R2b* ~xi !#

2
1

Xi 21
@Rb* ~xi !1R2b* ~xi 21!

2Rb* ~xi 21!2R2b* ~xi 22!#G
1

A2F0a

2m0
F j i 11

AXi 11

2
j i 21

AXi 21
G . ~40!

The previous equations have the form

q̇i~ t !5Ui~$q%!1(
j
Gi j ~$q%!j j

with ^j j~ t !j j 8~ t8!&5d j j 8d~ t2t8! ~41!

and we can therefore obtain a Fokker-Planck equation for
probability r($q%,t) of finding a given distribution$q%, at
time t. Two different procedures exist@28#, due to Ito and to
Stratonovich, but as remarked by Kawakatsu and Munak
@27# the result is the same. This is true even in the prese
of the symmetry-breaking term, because the two proced
may differ with respect of the termGi j , which does not
change if thel term is added.

The Fokker-Planck equation writes
l

-
-
e

s
.

an
re

-

e

ta
ce
es

]r

]t
52(

k

]

]qk
@Uk~$q%!r#1

1

2(kl

]2

]qk]ql
(
m
GkmGlmr.

~42!

Its actual form, in our case, is@29#

]r

]t
52(

k

]

]Xk
@Uk~$X%!r#

1
F0a2

4m0
2 (

k

1

Xk
F ]2

]Xk21
2

1
]2

]Xk11
2

22
]2

]Xk21]Xk11
Gr,

~43!

whereUk is nothing but the ‘‘deterministic’’ velocity of the
kth kink.

We are interested in the time dependence of the ave
value of Xi ~which does not depend oni ). To this end, we
define the distribution functions:

g~Xi ;t !5E
0

`

~dX! ı̌r, ~44!

g2~Xi ,Xi 11 ;t !5E
0

`

~dX! ı̌ , ı̌11r, ~45!

g3~Xi ,Xi 11 ,Xi 12 ;t !5E
0

`

~dX! ı̌ , ı̌11,ı̌12r. ~46!

The notation (dX) ı̌ , ı̌11, . . . means that the integration is pe
formed on all the variablesXj but Xi ,Xi 11 , . . . .

The details of the calculation follow Ref.@27# and there-
fore they will not be given here. By using the factorizatio
approximation

g2~Xi ,Xi 11 ;t !5g~Xi !g~Xi 11!, ~47!

g3~Xi ,Xi 11 ,Xi 12 ;t !5g~Xi !g~Xi 11!g~Xi 12! ~48!

and integrating Eq.~43! over (dX) ı̌ , we obtain

]g

]t
52

]

]X
~X,t ! ~49!

with the current of probability given by

~X,t !5
a

4m0
2K 1

XL @^R1* ~X!1R2* ~X!&2„R1* ~X!1R2* ~X!…#g

2
F0a2

2m0
2 K 1

XL ]g

]X
. ~50!

In the two relevant limits,R1* (X)1R2* (X) takes the form

R1* ~X!1R2* ~X!

5H 16nm0
2exp~2k0X!, l50 ~51!

~4l2m0
4/3K !exp~2klX!, lm0@AnK ~52!

and in the limitl50 we recover Eq.~4•4! of Ref. @27#.
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Important works on the solution of Eq.~49!, which also
go beyond the factorization approximation by taking in
account correlations of consecutive domains, are given
series of papers by Nagai and Kawasaki@30#. Here, we will
follow Ref. @27# and the first of the papers cited in Ref.@30#.

The time dependence of the density of kinksn(t)—or
alternatively of the average kink-kink distance:X̄(t)[^X&
51/n(t)—is studied by assuming that at large timesX̄ rep-
resents the only relevant scale in the problem, and there
g(X;t) satisfies the scaling expression

g~X;t !5n~ t !g̃~X/X̄!. ~53!

For example, for a Dirac-delta distribution~all the domains
have the same size! g̃(s)5d(s21), and for a Poisson distri
bution ~randomly distributed kinks! g̃(s)5e2s.

Secondly, we will use a steady-state approximation@27#
according to which the distributiong(X;t) does not depend
on time, on scales sufficiently small with respect toX̄(t):
more precisely, on scalesX,X* . This means that the motio
of a couple of kinks at a distance smaller thanX* is essen-
tially independent on the position of all the other kinks. B
cause of the scaling hypothesis, it must result thatX*
5X̄/a, with a constant.

The temporal variation ofn(t) is determined by the num
ber of kink-kink annihilations per unit time and unit lengt
Since each annihilation makes two kinks disappear, we h

ṅ~ t !52n~ t !~X50;t !52n~ t !~X* ;t !, ~54!

where the second relation derives from the fact that] tg50
implies ]X50.

By approximatinĝ f (X)& with f (X̄) ( f is a generic func-
tion!, and by neglectingRb* (X̄) with respect toRb* (X* ), we

finally obtain the following expression for the current inX̄* :

~X* ;t !52
a

4m0
2

1

X̄
@R1* ~X* !1R2* ~X* !#g~X* !

2
F0a2

2m0
2

1

X̄

]g

]X U
X*

. ~55!

1. Deterministic regime

If the noise term is negligible,

~X* ;t !52
a

4m0
2

1

X̄
@R1* ~X* !1R2* ~X* !#g~X* !. ~56!

Let us consider separately the two limiting cases. Wh
l50, by using Eq.~51!, the current is written as

~X* ;t !524ang̃~1/a!n2~ t !exp~2k0 /an! ~57!

and Eq.~54! becomes

ṅ~ t !528ang̃~1/a!n3~ t !exp~2k0 /an!, ~58!

whose solution gives, at large times
a

re

-

ve

n

X̄~ t !.~a/k0!ln~ t/t1!, t15F ea2

8g̃~1/a!
G K

an2 ~l50!.

~59!

In the opposite limit of a strong symmetry breaking (lm0

@AnK), a similar calculation gives

X̄~ t !.~a/kl!ln~ t/t2!,

t25F 3ea2

4g̃~1/a!
G K

an2

~lm0@AnK !. ~60!

We therefore obtain thatt1.t2.t* , where t* was de-
fined in Sec. III as the time necessary for the developing
the linear instability of the flat surface. So, the time scale
the logarithmic coarsening does not depend onl, but the
length scale does, since it depends on the width of the~larg-
est! domain wall.

We can ask what is the meaning of thea dependence in
Eqs. ~59! and ~60!. As pointed out by Nagai and Kawasa
@30#, since a lnt5lnta the parametera should have some
‘‘universal’’ value. In a mean-field calculation these autho
find a51, while in a numerical solution of the kink equa
tions they obtaina.3.5. More rigorous calculations@30#
give a52.27 if domains are completely uncorrelated, a
a53.56 if correlation effects between neighboring doma
are taken into account.

2. Noise-dominated regime

Now the current is

~X* ;t !52
F0a2

2m0
2

1

X̄

]g

]X U
X*

. ~61!

The equation forn(t) is written as

ṅ~ t !52FF0a2

m0
2 g̃8~1/a!Gn4~ t ! ~62!

and the solution is

X̄~ t !5X̄0~ t/t0!1/3, X̄05F3ag̃8~1/a!

m0
2 G1/3

, t051/F0a.

~63!

So, we will have logarithmic coarsening at ‘‘small’’ time
and a powerlike one at later times. The crossover time
determined by the relation (a/k)ln(tc /t* )5X̄0(tc /t0)

1/3. By
neglecting the logarithmic dependence~also becauset*
@t0), it is found that

tc't0S a

kX̄0
D 3

. ~64!

So, the ratio between the crossover time in the presenc
a strong asymmetry and the crossover time in the absenc
the l term is approximately given by
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tc~lm0@AnK !

tc~l50!
'S k0

kl
D 3

5S lm0

AnK
D 3

. ~65!

It is important to stress the cubic exponent in the previo
expression: even a not large value of (k0 /kl) gives rise to a
logarithmic coarsening that proceeds for a much longer ti
because kink interaction is stronger and therefore a largetc
is necessary so that noise gets the better of the determin
regime.

We want to emphasize that in the noise-dominated
gime, the actual value ofa is much less relevant than in th
deterministic regime, because of the power-law characte
the coarsening.

VIII. DISCUSSION

The main result of the present paper is that ‘‘coarsen
laws’’ do not change if the symmetry-breaking currentj SB is
put in the problem~at least, as far as a continuum loc
description is valid: see below!. This is mainly due to the
fact that the functional form of the kinks does not change
shown by the exact solution we have given in Sec. IV
their profile.

So, a first question is how general is this result if w
modify the surface current, and therefore Eq.~18!. A first
obvious modification would be to replace]xA(m2)5lmm8
with a more complicated expression of the slopem. This
corresponds to having al depending onm; in fact, l
5l(m2)52A8(m2). Since in the late stages of growth th
slope is almost everywhere equal to6m0, l is almost ev-
erywhere a constant equal tol(m0

2). Is it possible to simply
replacel by l(m0

2) in the final results? This should not be
bad approximation, as suggested by the analysis of Eq.~18!
when l depends onm. In fact, the asymptotic behavior o
M (x) ~the relevant one for kink interaction! and the values
of k6 can be found by linearizing the differential equatio
with respect tom02M (x) for a positive kink and to2m0
1M (x) for a negative kink~in both cases, in the limitx
→`). Because of the linearization, only the valuel(m0

2)
enters in the problem and therefore determines the profi

In a similar way, we can take into account a possiblem
dependence of the quantityK. In this case, such a depen
dence might arise from a slope-dependent mobilityG @31#—
if K has an equilibrium origin—or from the dependence
the terrace lengthl of the probability to nucleate a new te
race@6#, if K derives from nucleation noise.

Let us now discuss the choice of the slope-dependent
rent: j ES5nm(12m2/m0

2). The only features we require t
have a phase separation process arej ES8 (m50).0 ~to make
the flat surface unstable! and j ES(m0)50 for some finite
value m0 @indeed,m0 must be the first zero ofj ES#. These
features define the so-called model I.

Modifications of j ES inside this model do not change th
given picture, as suggested by the analysis of the statio
profile of the kink~for the sake of simplicity we putl50).
If we linearize the equation

j ES~m!1Km9~x!50 ~66!

with respect toe(x)5m02m(x), we obtain
s

e,

tic

-

of

g

s
r

.

r-

ry

j ES8 ~m0!e~x!1Ke9~x!50, ~67!

whose solution is again an exponential function. So, fox
→`, m(x)5m02e0e2kx, with k5A2 j ES8 (m0)/K. In our
expression ofj ES @Eq. ~9!#, j ES8 (m0)522n andk reduces to
k05A2n/K.

Conversely, in model II there is no finite zero inj ES. This
implies that the slope increases with no upper limit: forl
50, as shown by Huntet al. @23#, the maximal slopeM0 in
the profile is asymptotically proportional to the size of t
mounds: M0(t);X̄(t). Since the potential energ
U(m) @U8(m)52 j ES(m)# has no minima, it is no more
possible to define domains and domain walls, i.e., kinks.

Concerning the time dependence of coarsening, the o
existing numerical results are the ones found by Huntet al.
@23#. According to their simulations~in the presence of
noise!, X̄(t)'tn with n.0.22, a fairly small value@32#. No
~rigorous! theoretical derivation ofn is available at the mo-
ment. Some scaling arguments—applicable to noise
growth—can be found in Rost and Krug@33# and in Gol-
ubović @34#: The former given<1/4 while the latter gives
the equalityn51/4 @35#.

A final question we want to face now is how narrow kin
A actually are. In the limitlm0@AnK, from Eq. ~22! we
have k15lm0 /K and k252n/lm0. A simple inspection
shows that@l#5@K#5 length3 time21. Previous evaluations
suggest@6,16# l'K'F0l D

4 . This expression forK is surely
wrong if thermal detachment plays an important role. Co
versely, if l and K—or, more precisely,l(m0

2) and
K(m0

2)—are of the same order of magnitude, we obtaink1

'm0. This means that the width of the positive kin
(51/k1) is nothing but the inverse of the value of the co
stant slope in the surface profile: so, ifm0 is determined by
the symmetry of the crystal lattice,m0.1/a and the positive
kink is as narrow as a lattice constant. In this case, our
scription would break down, because the regions of posi
curvature in the surface profile would correspond to a d
continuity of the slope, i.e., to angular points, that are n
compatible with a local continuum equation@36#.

IX. CONCLUSIONS

The kink picture not only has allowed one to find th
coarsening law in the presence of the symmetry-break
term, but it has also given a qualitative description of t
dynamics that allows a better comprehension of the evo
tion of the system: the widening or the narrowing of a kin
the consequent different velocities of kinksA and B, the
conservation of the order parameter seen as a kinema
constraint on kink movement, the difference between
‘‘real’’ force acting on a kink and the ‘‘effective’’ force felt
by the kink, because of such constraint.

In this respect, the most important consequence of
breaking of symmetry is that negative kinks feel an effect
repulsive interaction with the nn kinks~but attractive with
the nnn ones!. It is important to stress this point becau
coarsening is the result of a global attraction between kin
if kinks repelled each other, the configuration withXi5const
would be stable.

Finally, the kink picture has provided the condition
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applicability of the local theory:

1

k1
5

K~m0
2!

m0l~m0
2!

@a. ~68!

If this relation is not fulfilled, a different method to stud
coarsening should be used. In Ref.@6# we showed that in this
case the evolution of the surface is governed by a nonlo
current; alternatively, we can keep a local description, but
must add a singular term to the currentj , and couple the
Langevin equation] tz(x,t)52a]xj with specific evolution
equations for the angular points. It would be clearly intere
ing to check if a different coarsening process may arise fr
an ‘‘angular point’’ picture.

To our knowledge, the current~9! has not been formerly
studied. The closest model is the one considered by Stro
et al. @18# in two dimensions, where the Mullins term
@Km9(x)# is replaced by a higher order one@Km-8(x)# and
the resulting equation is studied numerically. Clearly, in t
dimensions analytical treatments are much more diffic
anyway, a numerical solution of the model studied in t
present paper is available at the moment. One reason is
in two dimensions, even the model withoutj SB is not yet
fully understood, since the evolution equation form(x,t)
@37# is no longer equivalent to the Cahn-Hilliard equation
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APPENDIX A: LANGEVIN EQUATIONS FOR THE KINKS

1. Absence of noise

The starting point is the following multikink expansion
al
e

t-

io

t;
e
hat

-
o

m~x,t !5Mi~x,t !1(
j . i

@M j~x,t !2M j~2`!#

1(
j , i

@M j~x,t !2M j~`!# ~A1!

[Mi~x,t !1dmi ~A2!

which gives rise, once replaced in Eq.~23!, to

a21(
j

F2v jM j81 v̇ j

]M j

]v j
G5Dxj @m~x,t !#. ~A3!

M j depends onx and t through the combination (x
2v j t) and M j8 is the derivation with respect to all of thi
argument. We will also use the notationdxM to mean the
same kind of derivation. The single kink profile is found b
simply dropping the sum( j and the term inv̇ in Eq. ~A3!:

2a21v j
0M j85Dxj @M j #. ~A4!

It will be useful to consider, together withM j , also its
spatial derivativeM j8 which is localized aroundx5xj . We

define alsoM̃ j8 through the relationM j8(x)5DxM̃ j8(2x).
They satisfy the relations

2a21v j
0M j8~x!5Dx@Kdx

22U9~M j !1lM j81lM jdx#

3M j8~x!, ~A5!

a21v j
0M̃ j8~x!5@Kdx

22U9~M j !1lM j81lM jdx#DxM̃ j8~x!.
~A6!

Now, let us multiply~A3! by M̃ i8(x) and integrate onx.
By definingdv j[v j2v j

0 , we can write:
al

of Eq.
a21(
j
E dxM̃i8~x!H 2dv jM j81 v̇ j

]M j

]v j
J 5E dxM̃i8Dxj @m#1a21(

j
v j

0E dxM̃i8M j8 . ~A7!

The next step is to replacem(x,t)5Mi(x)1dmi in the currentj @m#. The definition of the nonlinear part of the potenti
U(m) @or equivalently of the currentU8(m)# is self-explanatory.

j @m#5Km92U8~m!1lmm8

5KMi91Kdmi92U8~Mi1dmi !1l~Mi1dmi !~Mi81dmi8!

5KMi91Kdmi92U8~Mi !2U9~Mi !dmi2UNL,i8

1lMiMi81ldmiMi81lMidmi81ldmidmi8 . ~A8!

The three terms that do not depend ondmi once Eq.~A4! is used cancel the termj 5 i in the last summation of Eq.~A7!;
dmi9 is simply written as( j Þ iM j9 , while all the other terms for the moment remain unchanged. So, the right hand side
~A7! is rewritten as

RHSu~A7!5E dxM̃i8~x!H(
j Þ i

@KDxM j91a21v j
0M j8#2Dx@UNL,i8 1U9~Mi !dmi #1lDx@dmiMi81Midmi81dmidmi8#J .

~A9!
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Let us consider separately some terms:

E dxM̃i8~x!(
j Þ i

KDxM j95E dxKdmidx
2DxM̃ i8 , ~A10!

2E dxM̃i8~x!Dx@U9~Mi !dmi #52E dxU9~Mi !dmiDxM̃ i8 , ~A11!

lE dxM̃i8Dx@dmiMi81dmi8Mi #5lE dx@dmiMi812Midmi8#DxM̃ i81lE dxdmi@Mi81Midx#DxM̃ i8 . ~A12!

Equation~A9! is therefore rewritten as

RHSu~A7!5E dxdmi@Kdx
22U9~Mi !1lMi81lMidx#DxM̃ i81E dxM̃i8(

j Þ i
a21v j

0Mi8

1E dxM̃i8@2DxUNL,i8 1lDx~dmiMi812Midm81dmidmi8!#[~A!1~B!1~C!. ~A13!

This way, Eq.~A7! takes the form (LHS[ left-hand side!: LHSu~A7!5(A)1(B)1(C).
By using Eq.~A6!,

~A!5a21E dxM̃i8(
j Þ i

@2v i
0Mi8#, ~A14!

which can be summed to (B), giving

~A!1~B!5a21E dxM̃i8(
j

~v j
02v i

0!M j8 ~A15!

and subtracting LHSu~A7!,

~A!1~B!2LHSu~A7!52~C!, ~A16!

that is to say:

a21(
j

F ~v j2v i
0!~M̃ i8 ,M j8!2 v̇ j S M̃ i8 ,

]M j

]v j
D G5E dxM̃i8@DxUNL,i8 2lDx~dmiMi812Midm81dmidmi8!#

[~C1!1~C2!1~C3!1~C4!. ~A17!

In the previous equation we have used the following scalar product:

~R,S!5E
2`

1`

dxR~x!S~x!. ~A18!

The three terms in square brackets on the right-hand side@(C2)1(C3)1(C4)# represent the effect of the symmetry-breaki
current.

By integrating by parts and by using the definition ofM̃ i8 ,

~C1!5„Mi8~2x!,UNL,i8 …. ~A19!

If we define the functionG(x,y)[U8(x1y)2U8(x)2yU9(x), thenUNL,i8 5G(Mi ,dmi). In the following, we will also make

use of the functionŨ(x,y)[U(x1y)2U(x)2yU8(x). It is obvious thatG(x,y)5]xŨ(x,y).
We observe that~i! G(Mi ,0)50; ~ii ! G may be written as a Taylor expansion whose generic term contains (dmi)

n; ~iii ! G
is not linear indmi , but if we use the binary interaction approximation, it is indeed linear. This approximation correspo

~dmi !
n'(

j . i
@M j2M j~2`!#n1(

j , i
@M j2M j~`!#n. ~A20!

In this approximation, we obtain
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~C1!5(
j . i

E dxMi8~xi2x!G„Mi~x2xi !,M j2M j~2`!…1(
j , i

E dxMi8~xi2x!G„Mi~x2xi !,M j2M j~`!…. ~A21!
, i

t-
s
t

er

nc-

d,

of

tly
the

a-
We must observe thatMi8 is not vanishing only whenx
'xi ; furthermore,@M j2M j (6`)# goes to zero when (1)
x.xj or (2) x,xj . On the basis of these considerations
is possible to write

~C1!5(
j . i

E
xj

1`

dxMi8~xi2x!G„Mi~x2xi !,DM j…

1(
j , i

E
2`

xj
dxMi8~xi2x!G„Mi~x2xi !,2DM j…,

~A22!

whereDM j[M j (`)2M j (2`).
SinceMi8(x) is an even function ofx:

E
xa

xb
dxMi8~xi2x!G„Mi~x2xi !,const…

5Ũ„Mi~x2xi !,const…uxa

xb ~A23!

and (C1) can be written as

~C1!5(
j . i

@Ũ„Mi~`!,DM j…2Ũ„Mi~xj2xi !,DM j…#

1(
j , i

@Ũ„Mi~xj2xi !,2DM j…

2Ũ„Mi~2`!,2DM j…#. ~A24!

At the first order in the small quantities@Mi(xj2xi)
2Mi(6`)# (6 respectively forj . i and j , i ), we have

~C1!52(
j . i

@Mi~xj2xi !2Mi~`!#G„Mi~`!,DM j…

1(
j , i

@Mi~xj2xi !2Mi~2`!#G„Mi~2`!,2DM j….

~A25!

In the following, we will restrict ourselves to neares
neighbor kinks interaction, and therefore only the termj
5 i 61 will survive in Eq.~A25!. If we also use the fact tha

G„Mi~6`!,6DMi 61…57DMi 61U9„Mi~6`!…
~A26!

we obtain the following final expression:

~C1!5@Mi~xi 112xi !2Mi~`!#DMi 11U9„Mi~`!…

1@Mi~xi 212xi !2Mi~2`!#DMi 21U9„Mi~2`!….

~A27!
t

The procedure to follow for the treatment of the oth
terms (Ci) is similar. In other words, ifR(x) and S(x) are
functions that are localized respectively inx1 and x2, we
make the approximation

R~x2x1!S~x2x2!'R~x2x1!S~x12x2!1R~x22x1!

3S~x2x2! ~A28!

and then we retain only the term corresponding to the fu
tion decreasing more rapidly@for example, if R(x) was a
Dirac delta function, only the first term would be retaine
because the second one would be exactly zero#. We give here
only the results.

~C2!5l$@Mi 11~xi 112xi !2Mi 11~`!#2@Mi 21~xi2xi 21!

2Mi 21~`!#%E
2`

1`

dx~Mi8!2,

~C3!50,

~C4!52
l

2
~DMi 11!2Mi8~xi 112xi !1

l

2
~DMi 21!2

3Mi8~xi2xi 21!.

The expression (C3)50 means that such a term is always
higher order than the others.

From now on, notation must take into account explici
the existence of two different classes of kinks. By using
following results

Mb~x!2Mb~`!.2b2m0exp~2kbx! when x→`

Rb~x![exp~2kbx!,

DMi5b2m0 ,

U9~6m0!52n,

E
2`

1`

dx@Mb8 ~x!#25
2

3
m0

2kb

it is straightforward to write

~C1!58nm0
2@Rb~Xi !2Rb~Xi 21!#,

~C2!5b~4/3!m0
3kbl@R2b~Xi !2R2b~Xi 21!#,

~A29!

~C4!52b4m0
3kbl@Rb~Xi !2Rb~Xi 21!#.

We can now put together Eq.~A29! with the previous
ones. A further approximation is to neglect the ‘‘deform
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tion’’ of the kink profile, due to its velocity, and to suppos
that kinks are immobile in the absence of interactions. T
way, we obtain

a21(
j

v j~M̃ i8 ,M j8!5~C1!1~C2!1~C4!, ~A30!

where the LHS can be further developed:

a21(
j

v j~M̃ i8 ,M j8!5a21(
j

v jE dxM̃i8~x!M j8~x!

5a21(
j

v jE dxDxM̃ i8~x!Dx
21M j8~x!

5a21(
j

v jE dxMi8~x!Dx
21M j8~x!.

~A31!

We therefore have to determine the inverse of the op
tor Dx . By following Kawasaki and Ohta@26#

Dx
21A~x,t !52

1

2E dx8ux2x8uA~x8,t !. ~A32!

The ‘‘integration constants’’ appearing when the operatorDx
is inverted are shown to be irrelevant for the kink dynam
~Ref. @27#!.

By applying Eq.~A32! to Eq. ~A31!:

E dxMi8~x!Dx
21M j8~x!

52
1

2E E dxdx8Mi8~x!ux2x8uM j8~x8! ~A33!

'2
1

2
uxi2xj u E E dxdx8Mi8~x2xi !M j8~x2xj !

~A34!

52
1

2
uxi2xj uDMiDM j . ~A35!
-

su
-

is

a-

s

So, Eq.~A17! is finally

2a21
DMi

2 (
j

DM j uxi2xj uẋ j5~C1!1~C2!1~C4!.

~A36!

2. The effect of noise

The term of noisedF(x,t) in Eq. ~2! corresponds to a
term h(x,t)5]xdF(x,t) on the right-hand side of Eq.~A3!.
To see how it affects the kink movement, it must be mu
plied by M̃ i8(x) and integrated onx. Since the LHS of Eq.
~A36! indeed corresponds to minus the LHS of Eq.~A3!, if
we call h i(t) the noise term to be added t
(C1)1(C2)1(C4) in Eq. ~A36!, it will result in

h i~ t !52E dxM̃i8~x!h~x,t !5E dx]xM̃ i8~x!dF~x,t !.

~A37!

The following properties are found@27#:

^h i~ t !&50 ~A38!

and

^h i~ t !h j~ t8!&52F0d~ t2t8!E dxM̃8~x!DxM̃ j8~x!

524m0
2F0~21! i 2 j uxi2xj ud~ t2t8!.

~A39!

To derive the spatial correlation between noise, we have u
the definition ofM̃ i8 and inverted the operatorDx . Finally,
we have used the fact thatDMiDM j54m0

2(21)i 2 j , a rela-
tion that can be used also for the LHS of Eq.~A36!. So, we
obtain the following system of coupled Langevin equatio

22a21m0
2(

j
~21! i 2 j uxi2xj uẋ j

5~C1!1~C2!1~C4!1h i~ t !. ~A40!
te
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@34# L. Golubović, Phys. Rev. Lett.78, 90 ~1997!.
@35# This value is a bit surprising: if compared ton.0.22 it would

lead one to conclude that~in 111 dimensions! deterministic
coarsening is not slower than the noisy one; if compared to
noiseless coarsening of model I@L(t); lnt#, we should con-
clude that steepening~due to the absence of finite zeros inj ES)
favors the coarsening.

@36# The reason is simply thatj SB ~the cause of angular points!
would contribute to the growth velocity with a term propo
tional to]x

2A(m2), which diverges in the angular points. Mor
details are given in Ref.@6#.

@37# M. Siegert, Physica A239, 420 ~1997!.


